Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy scattered photon

Perhaps the best known and most used optical spectroscopy which relies on the use of lasers is Raman spectroscopy. Because Raman spectroscopy is based on the inelastic scattering of photons, the signals are usually weak, and are often masked by fluorescence and/or Rayleigh scattering processes. The interest in usmg Raman for the vibrational characterization of surfaces arises from the fact that the teclmique can be used in situ under non-vacuum enviromnents, and also because it follows selection rules that complement those of IR spectroscopy. [Pg.1786]

Special Raman Spectroscopies. The weakness of Raman scattering results typically in the conversion of no more than 10 of the incident laser photons into a usable signal, limiting the sensitivity of conventional spontaneous Raman spectroscopy. This situation can be improved using alternative approaches (8,215,216). [Pg.318]

However, as Raman scattering is a two-photon process, the probability of the Raman scattering process is lower than that of fluorescence and IR absorption processes. The cross section of Raman scattering is 10 cm, which is much smaller than that of fluorescence ( 10 cm ) and IR absorption ( 10 °cm ). When we detect Raman scattering at the nanoscale, the number of photons obtained is less than with the usual micro-Raman spectroscopy due to reduction in the detection area or the number of molecules. To overcome this problem, we need to devise a method for amplification of Raman scattering. [Pg.25]

Raman spectroscopy comprises a family of spectral measurements based on inelastic optical scattering of photons at molecules or crystals. It involves vibrational measurements as well as rotational or electronic studies and nonlinear effects. Following, Raman will be used in the established but slightly inaccurate way as a synonym for the most important and most common technique of the family, linear vibrational Raman scattering. [Pg.125]

In either case, the information on the vibrational transition is contained in the energy difference between the excitation radiation and the inelastically scattered Raman photons. Consequently, the parameters of interest are the intensities of the lines and their position relative to the Rayleigh line, usually expressed in wavenumbers (cm 1). As the actually recorded emissions all are in the spectral range determined by the excitation radiation, Raman spectroscopy facilitates the acquisition of vibrational spectra through standard VIS and/or NIR spectroscopy. [Pg.126]

At room temperature the thermal population of vibrational excited states is low, although not zero. Therefore, the initial state is the ground state, and the scattered photon will have lower energy than the exciting photon. This Stokes shifted scatter is what is usually observed in Raman spectroscopy. Figure la depicts Raman Stokes scattering. [Pg.241]

Vibrations in molecules or in solid lattices are excited by the absorption of photons (infrared spectroscopy), or by the scattering of photons (Raman spectroscopy), electrons (electron energy loss spectroscopy) or neutrons (inelastic neutron scattering). If the vibration is excited by the interaction of the bond with a wave... [Pg.216]

Inelastic photon scattering processes are also possible. In 1928, the Indian scientist C. V. Raman (who won the Nobel Prize in 1930) demonstrated a type of inelastic scattering that had already been predicted by A. Smekal in 1923. This type of scattering gave rise to a new type of spectroscopy, Raman spectroscopy, in which the light is inelastically scattered by a substance. This effect is in some ways similar to the Compton effect, which occurs as a result of the inelastic scattering of electromagnetic radiation by free electrons. [Pg.29]

Laser Raman spectroscopy uses a light scattering process where a specimen is irradiated monochromatically with a laser. The visible light that has passed into the specimen causes the photons of the same wavelength to be scattered elastically, while... [Pg.21]


See other pages where Raman spectroscopy scattered photon is mentioned: [Pg.193]    [Pg.1178]    [Pg.1179]    [Pg.1179]    [Pg.1214]    [Pg.1788]    [Pg.2962]    [Pg.2962]    [Pg.269]    [Pg.208]    [Pg.208]    [Pg.208]    [Pg.318]    [Pg.6]    [Pg.497]    [Pg.13]    [Pg.95]    [Pg.50]    [Pg.50]    [Pg.52]    [Pg.76]    [Pg.556]    [Pg.239]    [Pg.462]    [Pg.466]    [Pg.23]    [Pg.232]    [Pg.233]    [Pg.623]    [Pg.201]    [Pg.17]    [Pg.20]    [Pg.22]    [Pg.601]    [Pg.427]    [Pg.201]    [Pg.34]    [Pg.240]    [Pg.241]    [Pg.242]    [Pg.244]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Photon scattering

Photon spectroscopy

Raman scattering

Raman scattering spectroscopy

Spectroscopy scattering

© 2024 chempedia.info