Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicals selenides

Decaitxjxylallon of a mixed anhydride (Ihlohydtoxamlc-cartwxylic) and interception of radicals as a sulfide, selenide or bromo denvative. [Pg.24]

Mixed aryl selenides have also proven to be excellent ree ents for group transfer reactions.Photolysis of selenides in an inert solvent such as benzene can initiate chain reactions. Substituted radicals can be generated in this manner, from a-selenoe-... [Pg.716]

If selenide additions are carried out in the presence of tri- -butylstannane, the radical generated by addition can be reduced by hydrogen abstraction. The chain is then continued by selenide abstraction by the stannyl radical. This leads to nonselenated addition and cyclization products. [Pg.717]

Some examples in the area of nucleoside chemistry are the reductions of bromide 10, chloride 11, and selenide 12 in 94, 92, and 87% yields, respectively, at 80 °C using AIBN as the radical initiator.Multiple dehalogenations are possible in a one-pot procedure by using the corresponding equivalents of (TMSlsSiH. ... [Pg.126]

The acyl selenide 19 affords the decarbonylated )S-lactam in good yield. A N-hydroxypyridine-2-thione ester 20 is used in the key step to construct the chiral cis-cyclopropane structure in compounds designed as antidopaminergic agents. The observed high cis selectivity is due to the hydrogen abstraction from the sterically demanding (TMSlsSiH, which occurs from the less-hindered side of the intermediate cyclopropyl radical. [Pg.129]

The number of reported reactions in which the radical derived from the decomposition of AIBN plays a role in the termination process has increased considerably. Often these reactions are not radical chain reactions, since the initiator is used in stoichiometric amounts. A few examples of rearomatization of cyclohexadienyl radicals by disproportionation have been reported herein. Below are some other examples, where the phenyl selenide 61 reacts with (TMSfsSiH (3 equiv), AIBN (1.2 equiv) in refluxing benzene for 24 h to give the coupling product of radicals 63 and 64 in good yields (Scheme 9).i24,i25 these cases,... [Pg.145]

The conversion of vicinal azido selenides into tetrahydrofiirans by PhSeOTf in MeCN at room temperature is reported <96JOC7085>. 3-Butadienyl tetrahydrofiirans and a-butadienyl y-butyrolactones can be prepared by radical cyclization of P-bromopent-4-en-2-ynyl ethers and mixed acetals <96SL391>. The total synthesis of trilobacin was reported <96JOC7642>. [Pg.138]

The synthesis of a-substituted phosphonates 89, via the electrophilic addition of phosphorylated C-radicals 88 (generated by reaction of BujSnH to the readily accessible a-phosphoryl sulfides (or selenides)) and electrophilic addition to electron rich alkenes, has been described [57] (Scheme 26). A large excess of alkene is necessary to minimize the competitive formation of the undesired compound 90 resulting from direct reduction of the initial radical 88. The ratio 89/90 has been measured for each example. The synthesis of the a-mono- or a,a-di-substituted (R or phosphonates 89 shows that the free radical approach... [Pg.180]

Scheme 38 Radical chain desulfurization or deselidization of phosphine sulfides or selenides to afford phosphines... Scheme 38 Radical chain desulfurization or deselidization of phosphine sulfides or selenides to afford phosphines...
Entry 5 is an example of the use of fra-(trimethylsilyl)silane as the chain carrier. Entries 6 to 11 show additions of radicals from organomercury reagents to substituted alkenes. In general, the stereochemistry of these reactions is determined by reactant conformation and steric approach control. In Entry 9, for example, addition is from the exo face of the norbornyl ring. Entry 12 is an example of addition of an acyl radical from a selenide. These reactions are subject to competition from decarbonylation, but the relatively slow decarbonylation of aroyl radicals (see Part A, Table 11.3) favors addition in this case. [Pg.963]

Scheme 10.17 illustrates allylation by reaction of radical intermediates with allyl stannanes. The first entry uses a carbohydrate-derived xanthate as the radical source. The addition in this case is highly stereoselective because the shape of the bicyclic ring system provides a steric bias. In Entry 2, a primary phenylthiocar-bonate ester is used as the radical source. In Entry 3, the allyl group is introduced at a rather congested carbon. The reaction is completely stereoselective, presumably because of steric features of the tricyclic system. In Entry 4, a primary selenide serves as the radical source. Entry 5 involves a tandem alkylation-allylation with triethylboron generating the ethyl radical that initiates the reaction. This reaction was done in the presence of a Lewis acid, but lanthanide salts also give good results. [Pg.965]

Cyclization of both alkyl and acyl radicals generated by selenide abstraction have also been observed. [Pg.972]

Entry 11 involves generation and cyclization of an alkoxymethyl radical from a selenide. The cyclization mode is the anticipated 5-exo with a cis ring juncture. This is a case in which the electronic characteristics of the radical are not particularly favorable (ERG oxygen in the radical), but cyclization nevertheless proceeds readily. The reaction in Entry 12 was used to prepare a precursor of epibatidine. Entry 13 shows a 6-endo cyclization that is favored by steric factors. The 6-endo cyclization is also favored with a tetrahydropyranyloxy substituent in place of the ester, indicating that the electronic effect is not important. Entries 14 to 16 involve acyl radicals generated from selenides. The preferred 6-endo cyclization in Entry 15 is thought to be due to the preference for the less-substituted end of the double bond. Entry 17 is an example of a 5-exo-dig cyclization. [Pg.978]

Application of radical reactions to organic synthesis has recently received much attention, and various important reactions have been discovered in this field. Alkyl halides, sulfides, selenides, and thiocarbonyl compounds have been used as precursors to alkyl radicals. Some examples are illustrated in Scheme 7.18.125... [Pg.207]

When colloidal selenium was heated with mercuric trifluoroacetate or silver trifluoroacetate, bis(trifluoromethyl)diselenide was formed (43). Later work with selenium/silver carboxylate, RC02Ag (R = CF3, C2F5, or C3F7), mixtures at 280° C in a vacuum produced a mixture of the bis(perfluoroalkyl)selenide and the bis(perfluoroalkyl)diselenide (44). Formation of a polyselenium trifluoroacetate, which decarboxylates to produce the trifluoromethylselenides, was the proposed mechanism for R = CF3 (44). However, silver trifluoroacetate is a source of trifluoromethyl radicals when heated above 260° C (21), hence the trifluoromethylselenides may be formed by reaction of trifluoromethyl radicals with selenium, as in the reaction of CF3I with selenium [Eq. (34)] (45). [Pg.245]

Unfortunately, the appeal of solid phase extractions on small scale fades as the scale increases due to the cost and inconvenience of using large amounts of fluorous silica gel. Here, modified techniques to reduce the tedium of repeated extractions are attractive. For example, Crich has recently introduced the minimally fluorous selenide C6Fi3CH2CH2C6H4SeH[171. This selenol is added in catalytic quantities to tin hydride reductions of reactive aryl and vinyl radicals. The high reducing capacity of the aryl selenide suppresses undesired reactions of product radicals without suppressing the reactions of the aryl and vinyl radicals themselves. After the reaction is complete, the selenol can be recovered by a modified continuous extraction procedure. [Pg.32]

Radical homologation. This tin pinacolate is known to generate trimethyltin radicals at 60° and appears to be superior to tributyltin hydride as a source of stannyl radicals for addition of alkyl halides to O-benzylformaldoxime (equation I).1 Iodides, bromides, and selenides can be used as radical precursors. The same... [Pg.52]

One-electron oxidation of organoselenium and organotellurium compounds results in initial formation of a radical cation (equations (19) and (20)). The eventual fate of the radical cation depends on several variables, but is typically a Se(lV) or Te(lV) compound. The scope of this section will be the one-electron oxidation of selenides and tellurides that are not contained in a heteroaromatic compound, and ones in which the Se and Te are bonded to two carbons, rather than to other heteroatoms. Tellurium- and selenium-containing electron donor molecules have been reviewed. [Pg.117]

The absence of dimer radical cation formation by diphenyl selenide under the pulse radiolysis conditions is in contrast to bimolecular reactions believed to occur under electrochemical conditions/ In these experiments, a rotating disk electrode was used in combination with commutative voltammetry under anhydrous conditions. The results led to the conclusion that reversible one-electron oxidation is followed by disproportionation, then reaction of the resulting dication with diphenyl selenide or an external nucleophile, with the likely intermediacy of the dimer dication (Fig. 33). As expected, the dihydroxy selenane is formed when water is present. Based on the kinetics of the electrochemical reaction, the authors believe the diselenide dication, not the radical cation, to be the intermediate that reacts with the nucleophile. [Pg.124]

Unlike the aryl methyl selenides, the alkyl aryl selenides with alkyl groups of two carbons or more are able to undergo scission of the radical cation at the Cgp-Se bond, yielding the ArSe radical (Fig. 35). This can impact product distribution, particularly under conditions in which water is not present to react with the radical cation. Trends in ease of oxidation typically seen in series of chalcogen compounds can still be observed, and are consistent with trends in the diaryl chalcogenides and aryl methyl chalcogenides. [Pg.129]

Aryl trimethylsilylmethyl selenides also yielded the diaryl diselenide as the major product, but possibly through a somewhat different mechanism, due to the increased stability of the initially formed radical cation (Fig. 31) ... [Pg.131]


See other pages where Radicals selenides is mentioned: [Pg.164]    [Pg.172]    [Pg.243]    [Pg.325]    [Pg.130]    [Pg.941]    [Pg.65]    [Pg.360]    [Pg.958]    [Pg.961]    [Pg.978]    [Pg.106]    [Pg.17]    [Pg.421]    [Pg.520]    [Pg.29]    [Pg.353]    [Pg.924]    [Pg.28]    [Pg.721]    [Pg.79]    [Pg.123]    [Pg.126]   
See also in sourсe #XX -- [ Pg.958 , Pg.961 , Pg.963 , Pg.975 ]




SEARCH



Selenides radicals from

Selenides, free-radical reduction

© 2024 chempedia.info