Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical anions chain reactions

At room temperature under photostimulation a-nitrosulfones react with a variety of nucleophiles via radical anion chain reactions interestingly, in none of the cases where the PhSOj group is involved in SrnI type of substitution does the O end of the ambident anion " play a role. This strong regioselectivity is reminiscent of the one reported for other ambident anions involved in these radical chain substitutions. ... [Pg.1076]

Excimer Reactions Exdplex Reactions Involving Aliphatic Amines Exciplex Reactions Involving Aromatic Amines Miscellaneous Electron Transfer Processes Radical Anion Chain Reactions... [Pg.750]

Reactions of aliphatic nitro compounds with nucleophiles have been reviewed442-444. The oxidative reaction of nitronate anions, e.g. 410, with thiocyanate anions to yield thiocyanates 411 proceeds by a radical radical-anion chain mechanism SrnI (equation 133). Analogous replacements by azide, benzenesulphinate and 4-chlorobenzenethiolate have been reported445. [Pg.611]

Our early work examined the reaction of PCTFE with sulfur, selenium and phosphorous nucleophiles 9 to achieve high levels of functionalization through a well-precedented (in the case of perfluoroalkyl iodides)20"24 one electron transfer, radical anion chain process. While such a reaction demonstrated the feasibility of using one-electron processes for the functionalization of PCTFE, the carbon-sulfur linkage remained susceptable to oxidation. [Pg.134]

A nonchain Sr j 1-like mechanism is suggested in which the site of methylation is dictated by radical anion charge density. Whether radical-radical (nonchain) or radical-radical anion (chain) coupling dominates the reaction depends on the oxidizability of the anion (254-256). [Pg.289]

Photoinitiated polymerization uses the energy of light for the rapid conversion of monomeric liquids to solid polymeric products. The term photopolymerization implies that the initiation step of a radical, cationic, or anionic chain reaction producing a macromolecule requires the absorption of a photon. Since the absorption of one photon may start the reaction of up to 10 monomeric units, photoinitiated polymerization is, in practice, one of the most powerful chemical amplification techniques. [Pg.3688]

We remarked that the first step of the radical-anion chain mechanism (Fig. 4) can be considered as a reduction of the halide by the nucleophile. Consequently, we tried to use well known reductants such as zinc. However, no reaction occurred when the halide is placed in the presence of zinc in various solvents. By analogy with the thiophenoxide condensation, we attempted the transformation in DMF under slight pressure. Consumption of the reagents was only observed when electrophilic substrates, such as carbonyl compounds, are present since the beginning of the reaction. These Barbier like condensations started more easily in pyridine than in DMF (ref. 19). Moderate yields were obtained with aldehydes as substrates (Fig. 6). [Pg.316]

Copolymers are made to produce unique or functional properties in the polymeric product. The properties of step copolymers can be understood and, in some cases, predicted from an analysis of the chain length and functional groups in the monomers. The composition and composition-dependent properties of a free radical, chain reaction copolymer can be predicted from monomer reactivity ratios, a property first correctly quantified in 1944 (11-14). These ratios have been extensively measured and tabulated (15). They allow, by use of differential equations, the calculation of the monomer content in a copolymer as a function of time during the reaction. Reactivity ratios have also been measured for cationic chain reactions (16). Anionic chain reactions in monomer mixtures are generally so fast and indiscriminate that reactivity ratios are meaningless. [Pg.814]

The kind of reaction which produces a dead polymer from a growing chain depends on the nature of the reactive intermediate. These intermediates may be free radicals, anions, or cations. We shall devote most of this chapter to a discussion of the free-radical mechanism, since it readily lends itself to a very general treatment. The discussion of ionic intermediates is not as easily generalized. [Pg.346]

The electrolysis of adamantylideneadamantane solutions affords the radical cation, which can add molecular (triplet) oxygen to give the peroxide radical anion, which can react with adamantylideneadamantane to give the 1,4-diradical and another molecule of adamantylideneadamantane radical cation. The latter reacts with oxygen, to continue the chain of the reaction, while the former cyclizes to the corresponding 1,2-dioxetane (Scheme 18) (81JA2098). [Pg.40]

Experiments in which radical scavengers are added indicate that a chain reaction is involved, because the reaction is greatly retarded in the presence of the scavengers. The mechanism shown below indicates that one of the steps in the chain process is an electron transfer and that none of the steps involves atom abstraction. The elimination of nitrite occurs as a unimolecular decomposition of the radical anion intermediate, and the SrnI mechanistic designation would apply. [Pg.729]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]

Two pathways for the reaction of sulfate radical anion with monomers have been described (Scheme 3.81).252 These are (A) direct addition to the double bond or (B) electron transfer to generate a radical cation. The radical cation may also be formed by an addition-elimination sequence. It has been postulated that the radical cation can propagate by either cationic or a radical mechanism (both mechanisms may occur simultaneously). However, in aqueous media the cation is likely to hydrate rapidly to give a hydroxyelhyl chain end. [Pg.129]

On the basis of all these results and his own investigations on chloro- and bromo-de-diazoniations (Galli, 1981), Galli proposed in 1988 that iodo-de-diazoniation, after formation of the aryl radical in the initiation reaction (Scheme 10-22) follows three coupled iodination chain reactions based on the formation of the I2 molecule and the If anion in the step shown in Scheme 10-23, namely iodine atom (I ) addition (Scheme 10-24), and iodine abstraction from I2 and If in Schemes 10-25 and 10-26 respectively. Aryl radicals and iodine molecules are regenerated as indicated in Scheme 10-27. The addition of iodide ion to aryl radicals forming the radical anion [Arl] -, as in Scheme 10-28, is considered an unlikely pathway, as that reaction has been found to be reversible (Lawless and Hawley, 1969 Andrieux et al. 1979). [Pg.236]

Novi and coworkers124 have shown that the reaction of 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene with sodium benzenethiolate in dimethyl sulfoxide yields a mixture of substitution, cyclization and reduction products when subjected at room temperature to photostimulation by a sunlamp. These authors proposed a double chain mechanism (Scheme 17) to explain the observed products. This mechanism is supported by a set of carefully designed experiments125. The addition of PhSH, a good hydrogen atom donor, increases the percent of reduction products. When the substitution process can effectively compete with the two other processes, the increase in the relative yield of substitution (e.g., with five molar equivalents of benzenethiolate) parallels the decrease in those of both cyclization and reduction products. This suggests a common intermediate leading to the three different products. This intermediate could either be the radical anion formed by electron transfer to 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene or the a radical formed... [Pg.1072]

Keywords Sulfur chains Molecular structures Radical anions Spectra Redox reactions... [Pg.127]

The tetrasulfide radical anion will dimerize to which equilibrates with longer chains from which eventually Ss is formed by the back reaction shown in Eq. (22). [Pg.145]


See other pages where Radical anions chain reactions is mentioned: [Pg.398]    [Pg.758]    [Pg.398]    [Pg.758]    [Pg.79]    [Pg.99]    [Pg.1154]    [Pg.914]    [Pg.265]    [Pg.236]    [Pg.99]    [Pg.727]    [Pg.730]    [Pg.424]    [Pg.541]    [Pg.748]    [Pg.487]    [Pg.235]    [Pg.272]    [Pg.1057]    [Pg.1063]    [Pg.1068]    [Pg.1074]    [Pg.1075]    [Pg.98]    [Pg.30]   
See also in sourсe #XX -- [ Pg.537 ]




SEARCH



Chain radical

Radical chain reactions

Radicals radical chain reaction

© 2024 chempedia.info