Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemization reactions, intramolecular

In some reactions intramolecular chalcogen nitrogen interactions may lead to stereochemical control. For example, selenenyl bromides react with C=C double bonds, providing a convenient method of introducing various functional groups. The reaction proceeds readily, but affords a racemic mixture. The modified reagent 15.22 contains a chiral amine in close interaction with the selenium atom. It reacts with olefins affording up to 97% ee of isomer A (Scheme 15.2). ... [Pg.303]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

Also, the nucleophilicity of cyanide overpowers the nucleophile independent dissociation and intramolecular racemization reactions, which had been well studied many years ago (11-16). [Pg.359]

Our initial improvement in the synthesis of pyrrolidine acid 3 relied on a racemic 1,3 dipolar cycloaddition followed by resolution. Attempts to devise asymmetric protocols of this reaction using chiral auxiliaries were not productive. The results from our laboratories were consistent with literature findings, with a moderate diastereoselectivity of 3 to 4 1 at best obtained even when double chiral auxiliaries were used. Several other approaches, such as Aza-Cope/Mannich reaction, intramolecular C-H insertion, and asymmetric aryl 1,4 addition, did not bear fruit. [Pg.79]

The final two stages are very straightforward. Oxidative scission of the C3-C5 double bond in 6 with ozone provides triketone 5 which, without purification, is subjected to a base-induced intramolecular aldol/dehydration reaction. The crystalline product obtained from this two-step sequence (45 % overall yield) was actually an 85 15 mixture of ( )-progesterone and a diastereomeric substance, epimeric at C-17. Two recrystallizations afforded racemic progesterone [( )-(1)] in diastereomerically pure form. [Pg.92]

Intramolecular Friedel-Crafts acylation has been observed with bonellin dimethyl ester (20).53 The reaction proceeds in contrast to corresponding porphyrins, very smoothly with concentrated sulfuric acid because the propanoic acid side chain at the sp3 center is located above the macrocyclic ring system and therefore can better fulfill the stereoelectronic requirements for the ring-closure reaction. The ring closure is accompanied by racemization in the product 21. [Pg.631]

An intramolecular Hiyama reaction was applied for macrocyclization in the synthesis of the racemic cyclic 14-membered cembranoid antitumor agent asperdiol10. [Pg.439]

The evidence presented so far excludes the formation of dissociated ions as the principal precursor to sulfone, since such a mechanism would yield a mixture of two isomeric sulfones. Similarly, in the case of optically active ester a racemic product should be formed. The observed data are consistent with either an ion-pair mechanism or a more concerted cyclic intramolecular mechanism involving little change between the polarity of the ground state and transition state. Support for the second alternative was found from measurements of the substituent and solvent effects on the rate of reaction. [Pg.671]

Nanaomycin A 103 and deoxyfrenolicin 108 are members of a group of naphthoquinone antibiotics based on the isochroman skeleton. The therapeutic potential of these natural products has attracted considerable attention, and different approaches towards their synthesis have been reported [65,66]. The key step in the total synthesis of racemic nanaomycin A 103 is the chemo-and regioselective benzannulation reaction of carbene complex 101 and allylacety-lene 100 to give allyl-substituted naphthoquinone 102 after oxidative workup in 52% yield [65] (Scheme 47). The allyl functionality is crucial for a subsequent intramolecular alkoxycarbonylation to build up the isochroman structure. However, modest yields and the long sequence required to introduce the... [Pg.147]

For that reason an intramolecular benzannulation was developed, which incorporates all components for the intramolecular alkoxycarbonylation into the naphthoquinone 105 [65]. Based on that strategy a short and convergent pathway for the synthesis of racemic deoxyfrenolicin 108 was accomplished. Xu et al. replaced the allylacetylene 100 in the reaction sequence for nanaomycin A by alkynoate 106. The benzannulation product 107 was an appropriate precursor for a subsequent tandem oxa-Pictet-Spengler cyclisation/DDQ-induced coupling reaction [66]. Following this strategy the total synthesis of enan-tiomerically pure deoxyfrenolicin could be accomplished (Scheme 48). [Pg.148]

Another example of an enzymatic one-pot multiple Diels-Alder reaction is illustrated in Table 4.20 [83]. Racemic furfuryl alcohols 130 in the presence of ethoxy vinyl methyl fumarate 131 and enzyme TOYOBO-LIP undergo enzymatic acylation followed by kinetic enzymatic resolution to give the acyl derivatives 132 which then affords the adducts 133 and 134 by intramolecular Diels-Alder reaction 3-methyl-furfuryl alcohol 130 (R = Me) in acetone gives the best results. [Pg.182]

N-donor ligand. The reaction appears to proceed via an acyclic iminoplatinum(II) intermediate that undergoes a subsequent intramolecular cyclization. Some mechanistic aspects of this versatile reaction have been elucidated.225,226 A4-l,2,4-oxadiazolines have been prepared by the [2+3] cycloaddition of various nitrones to coordinated benzonitrile in m-[PtCl2( D M SO)(PhCN)] precursors.227,228 Racemic and chiral [PtCl2(PhMeSO)(PhCN)] complexes have also been used in order to introduce a degree of stereoselectivity into the reaction, resulting in the first enantioselective synthesis of A4-l,2,4-oxadiazolines, which can be liberated from the complexes by the addition of excess ethane-1,2-diamine. [Pg.702]

A combination of an enzymatic kinetic resolution and an intramolecular Diels-Alder has recently been described by Kita and coworkers [23]. In the first step of this domino process, the racemic alcohols ( )-8-55 are esterified in the presence of a Candida antarctica lipase (CALB) by using the functionalized alkenyl ester 8-56 to give (R)-8-57, which in the subsequent Diels-Alder reaction led to 8-58 in high enantioselectivity of 95 and 91 % ee, respectively and 81 % yield (Scheme 8.15). In-... [Pg.538]

The tandem-Knoevenagel-ene reaction is a powerful tool to synthesize five-and six-membered carbocycles.2 5 The process is exemplified by the diastereoselective synthesis of 4a. Compound 4a has been obtained In both enantiomeric forms and as a racemate according to the procedure described here. The sequence includes the Knoevenagel reaction of citronellal, 1, and dimethyl malonate, 2, followed by the intramolecular ene cyclization of the chiral 1,7-diene 3 to yield the trans 1,2-disubstituted products 4a and 4b. Whereas the thermal cyclization of 3 at 160°C provides 4a and 4 b in a ratio of only 89.7 10.3, the Lewis acid... [Pg.87]

In a closely related study, Tung and Sun discussed the microwave-assisted liquid-phase synthesis of chiral quinoxalines [80], Various L-a-amino acid methyl ester hydrochlorides were coupled to MeOPEG-bound ortho-fluoronitrobenzene by the aforementioned ipso-fluoro displacement method. Reduction under microwave irradiation resulted in spontaneous synchronous intramolecular cyclization to the corresponding l,2,3,4-tetrahydroquinoxalin-2-ones (Scheme 7.71). Retention of the chiral moiety could not be monitored during the reaction, but after release of the desired products it was found that about 10% of the product had undergone racemization. [Pg.344]

Most of the work on the C-N bond-forming crosscoupling reactions has concentrated on the formation of aromatic C-N bonds. Recent studies show that the application of cross-coupling reactions to alkenyl halides or triflates furnished enamines (Scheme 19) (for palladium-catalyzed reaction, see 28,28a-28d, and for copper-catalyzed reaction, see 28e-28g). Brookhart et al. studied the palladium-catalyzed amination of 2-triflatotropone 109 for the synthesis of 2-anilinotropone 110.28 It was found that the reaction of 109 proceeded effectively in the presence of racemic BINAP and a base. As a simple method for the synthesis of enamines, the palladium-catalyzed reactions of alkenyl bromide 111 with secondary amine were achieved under similar conditions.2841 The water-sensitive enamine 112 was isolated as pure compound after dilution with hexane and filtration through Celite. The intramolecular cyclization of /3-lactam 113, having a vinyl bromide moiety, was investigated by Mori s... [Pg.707]

Synthesis of the common intermediate C (4), and its further conversion to 2 and 3 is illustrated in Scheme 7-3. Two racemic compounds, ( )-7 and ( + )-10, are prepared from readily available starting materials 5 and 8, respectively (Scheme 7-2). Coupling of 7 and 10 gives a mixture of diastereomers 11. An intramolecular aldol reaction of 11 catalyzed by D-proline yields diastereomers 12 and 13 in equal molar ratios (about 36% ee for each diastereomer). Compound 12, the desired ketone, is converted to 14, which is further purified by crystallization to give the compound in the desired stereochemistry in sterically pure form. Reduction of the ketone carbonyl group and subsequent methoxy... [Pg.398]

Lim and Sulikowski (84) explored the intramolecular C-H insertion in 119 alpha to the nitrogen atom as a rapid entry to the mitomycin skeleton and the antitumor agent FR-900482. Rhodium(II) based catalysts provide nearly racemic products. Bis(oxazoline) (55b) affords highest selectivities in this system and chloroform was found to be the optimal solvent, Eq. 71. The authors note that the reaction is somewhat capricious. [Pg.46]

Under more basic conditions, a-elimination predominates and insertion of the carbene 40 to the solvent gives racemic 22. Non-basic and poorly nucleophilic conditions allow neighboring group participation to form the rearranged substitution product 23 with complete chirality transfer. The participation can be considered as an intramolecular nucleophilic substitution, and does occur only when it is preferable to the external reactions. Under slightly basic conditions with bases in HFIP, participation is allowed, and the weak base can react with the more electrophilic vinylic cation 21 (but not with the iodonium ion 19). A suitably controlled basicity can result in the formation of cycloalkyne 39, which is symmetrical and leads to racemization. These reactivities are illustrated in Scheme 6. [Pg.95]

The key step in Fiirstner s elegant synthesis of racemic 153 furnishing a Z E=7 3 mixture, used an intramolecular metathesis reaction of the ester A [292]. Employing optically active 9-decene-2-ol will certainly produce the desired enantiomer (Fig. 7). [Pg.138]


See other pages where Racemization reactions, intramolecular is mentioned: [Pg.180]    [Pg.194]    [Pg.262]    [Pg.4295]    [Pg.207]    [Pg.299]    [Pg.420]    [Pg.114]    [Pg.258]    [Pg.265]    [Pg.470]    [Pg.664]    [Pg.330]    [Pg.337]    [Pg.654]    [Pg.1380]    [Pg.139]    [Pg.133]    [Pg.531]    [Pg.209]    [Pg.97]    [Pg.121]    [Pg.731]    [Pg.137]    [Pg.1048]    [Pg.235]    [Pg.72]    [Pg.260]    [Pg.232]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Racemic reaction

Racemization reactions

© 2024 chempedia.info