Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quasi-kinetics

Quasi-kinetic models deal with processes that are controlled by mass transfer rates rather than by chemical reaction rates. These models assume nearly instantaneous attainment of equilibrium within the region of interest, so changes in the species distribution are controlled by the rate of transfer of substances into or out of that region. These models are constrained by continuity equations making them similar to the chemical reactors models in Chapter 4. [Pg.156]

Most of the models considered in this chapter rely on the local equilibrium assumption. This assumption requires that the rates of chemical reaction and local mass transfer within the model s spatial domain are fast relative to the residence time of a slug of solution within that domain. Knapp (1989) and Bahr and Rubin (1987) have evaluated conditions where the local equilibrium assumption is valid and the Knapp treatment is summarized by Zhu and Anderson (2002). [Pg.156]

For the local equilibrium assumption to be valid, both the mineral and solution reaction rates and the transport rate to and from the minerals surfaces must be fast. These constraints are best tested using the first Damkohler number, Dai, and the Peclet number, Pe. Dai compares the rate of consumption (or production) of a species by chemical reaction to the rate of delivery (or removal) of that species by advection. [Pg.156]

R (molal/sec) is the reaction rate and (molal) is the equilibrium concentration of the reactant, v (m/sec) is the surficial velocity of the fluid and L is the characteristic length of the domain. A rule of thumb is that when Dai 0.1, less than 10% of the aqueous species will react as the solution transits L and when Daj 10, more than 90% of the aqueous species will react over [Pg.156]

Example 8.1. Equilibration of dissolved silica with quartz in a fracture [Pg.157]


Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

The system of coupled differential equations that result from a compound reaction mechanism consists of several different (reversible) elementary steps. The kinetics are described by a system of coupled differential equations rather than a single rate law. This system can sometimes be decoupled by assuming that the concentrations of the intennediate species are small and quasi-stationary. The Lindemann mechanism of thermal unimolecular reactions [18,19] affords an instructive example for the application of such approximations. This mechanism is based on the idea that a molecule A has to pick up sufficient energy... [Pg.786]

General first-order kinetics also play an important role for the so-called local eigenvalue analysis of more complicated reaction mechanisms, which are usually described by nonlinear systems of differential equations. Linearization leads to effective general first-order kinetics whose analysis reveals infomiation on the time scales of chemical reactions, species in steady states (quasi-stationarity), or partial equilibria (quasi-equilibrium) [M, and ]. [Pg.791]

Many optical studies have employed a quasi-static cell, through which the photolytic precursor of one of the reagents and the stable molecular reagent are slowly flowed. The reaction is then initiated by laser photolysis of the precursor, and the products are detected a short time after the photolysis event. To avoid collisional relaxation of the internal degrees of freedom of the product, the products must be detected in a shorter time when compared to the time between gas-kinetic collisions, that depends inversely upon the total pressure in the cell. In some cases, for example in case of the stable NO product from the H + NO2 reaction discussed in section B2.3.3.2. the products are not removed by collisions with the walls and may have long residence times in the apparatus. Study of such reactions are better carried out with pulsed introduction of the reagents into the cell or under crossed-beam conditions. [Pg.2080]

B2.5.351 after multiphoton excitation via the CF stretching vibration at 1070 cm. More than 17 photons are needed to break the C-I bond, a typical value in IR laser chemistry. Contributions from direct absorption (i) are insignificant, so that the process almost exclusively follows the quasi-resonant mechanism (iii), which can be treated by generalized first-order kinetics. As an example, figure B2.5.15 illustrates the fonnation of I atoms (upper trace) during excitation with the pulse sequence of a mode-coupled CO2 laser (lower trace). In addition to the mtensity, /, the fluence, F, of radiation is a very important parameter in IR laser chemistry (and more generally in nuiltiphoton excitation) ... [Pg.2131]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

Eqs. (1,4,5) show that to determine the equilibrium properties of an adsorbate and also the adsorption-desorption and dissociation kinetics under quasi-equilibrium conditions we need to calculate the chemical potential as a function of coverage and temperature. We illustrate this by considering a single-component adsorbate. The case of dissociative equilibrium with both atoms and molecules present on the surface has recently been given elsewhere [11]. [Pg.444]

For the equihbrium properties and for the kinetics under quasi-equilibrium conditions for the adsorbate, the transfer matrix technique is a convenient and accurate method to obtain not only the chemical potentials, as a function of coverage and temperature, but all other thermodynamic information, e.g., multiparticle correlators. We emphasize the economy of the computational effort required for the application of the technique. In particular, because it is based on an analytic method it does not suffer from the limitations of time and accuracy inherent in statistical methods such as Monte Carlo simulations. The task of variation of Hamiltonian parameters in the process of fitting a set of experimental data (thermodynamic and... [Pg.476]

Table 14. Kinetics of quasi-diffusion of oxytetracycline ions in sulfonated cation exchangers... Table 14. Kinetics of quasi-diffusion of oxytetracycline ions in sulfonated cation exchangers...
Furthermore, for calculating the effective coefficient of quasi-diffusion in a composite (D) with the corresponding limitation of the entire process of heterogeneous mass-exchange, equations reported in Section 5.1 may be used. The high kinetic permeability of cellosorbents for large organic ions are listed in Table 16. [Pg.42]

Enzyme Kinetics for Rapid Equilibrium System (quasi-equilibrium)... [Pg.135]

Enzyme reaction kinetics were modelled on the basis of rapid equilibrium assumption. Rapid equilibrium condition (also known as quasi-equilibrium) assumes that only the early components of the reaction are at equilibrium.8-10 In rapid equilibrium conditions, the enzyme (E), substrate (S) and enzyme-substrate (ES), the central complex equilibrate rapidly compared with the dissociation rate of ES into E and product (P ). The combined inhibition effects by 2-ethoxyethanol as a non-competitive inhibitor and (S)-ibuprofen ester as an uncompetitive inhibition resulted in an overall mechanism, shown in Figure 5.20. [Pg.135]

As a general rule, in both equilibrium and kinetic studies, the process that forms the stronger bond is favored more for the heavier isotope. If the labeled atom is more firmly attached in the transition state, as it was for Eq. (9-100), then one can even find an inverse kie. One rule to remember Substitution with a heavier atom favors the stronger bond in any equilibrium, including the quasi-equilibrium of TST. [Pg.217]


See other pages where Quasi-kinetics is mentioned: [Pg.192]    [Pg.156]    [Pg.158]    [Pg.160]    [Pg.162]    [Pg.164]    [Pg.166]    [Pg.168]    [Pg.170]    [Pg.172]    [Pg.174]    [Pg.176]    [Pg.178]    [Pg.180]    [Pg.67]    [Pg.192]    [Pg.156]    [Pg.158]    [Pg.160]    [Pg.162]    [Pg.164]    [Pg.166]    [Pg.168]    [Pg.170]    [Pg.172]    [Pg.174]    [Pg.176]    [Pg.178]    [Pg.180]    [Pg.67]    [Pg.778]    [Pg.784]    [Pg.884]    [Pg.1801]    [Pg.1928]    [Pg.2795]    [Pg.2965]    [Pg.45]    [Pg.80]    [Pg.20]    [Pg.399]    [Pg.154]    [Pg.5]    [Pg.39]    [Pg.41]    [Pg.374]    [Pg.73]    [Pg.137]    [Pg.152]    [Pg.129]   


SEARCH



© 2024 chempedia.info