Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrolidines alkylation

Progress has been made toward enantioselective and highly regioselective Michael type alkylations of 2-cyclohexen-l -one using alkylcuprates with chiral auxiliary ligands, e. g., anions of either enantiomer of N-[2-(dimethylamino)ethyl]ephedrine (E. J. Corey, 1986), of (S)-2-(methoxymethyl)pyrrolidine (from L-proline R. K. EHeter, 1987) or of chiramt (= (R,R)-N-(l-phenylethyl)-7-[(l-phenylethyl)iinino]-l,3,5-cycloheptatrien-l-amine, a chiral aminotro-ponimine G. M. Villacorta, 1988). Enantioselectivities of up to 95% have been reported. [Pg.20]

In peptide syntheses, where partial racemization of the chiral a-carbon centers is a serious problem, the application of 1-hydroxy-1 H-benzotriazole ( HBT") and DCC has been very successful in increasing yields and decreasing racemization (W. Kdnig, 1970 G.C. Windridge, 1971 H.R. Bosshard, 1973), l-(Acyloxy)-lif-benzotriazoles or l-acyl-17f-benzo-triazole 3-oxides are formed as reactive intermediates. If carboxylic or phosphoric esters are to be formed from the acids and alcohols using DCC, 4-(pyrrolidin-l -yl)pyridine ( PPY A. Hassner, 1978 K.M. Patel, 1979) and HBT are efficient catalysts even with tert-alkyl, choles-teryl, aryl, and other unreactive alcohols as well as with highly bulky or labile acids. [Pg.145]

In 1954 Stork et al. (i) reported that the alkylation of the pyrrolidine enamine of cyclohexanone (5) with methyl iodide followed by acid hydro-I ysis led to the monoalkylated ketone. It was thus obvious that the enamine (7) derived by the loss of proton from the intermediate methylated iminium cation (6) failed to undergo any further alkylation. [Pg.2]

The pyrrolidine enamine of 2-methylcyclohexanone (7) was in fact found to be quite inert toward further alkylation and was shown to consist only of the trisubstituted isomer (4) on the basis of the NMR spectral data. The... [Pg.2]

Karady et al. (72) report that the alkylation of the pyrrolidine enamine of 4-alkycyclohexanone was found to be subject to stereoelectronic control the product of hydrolysis under nonequilibrating conditions led largely to the tra i-2,4-dialkylcyclohexanone. [Pg.6]

The presence of 1,3-diaxial interaction between the C-2 alkyl group and the C-4 axial hydrogen atom is reflected in the rate of enamine formation of 2-substituted cyclohexanone. It has been shown by Hunig and Salzwedel (20) that even under forcing conditions, the yield of pyrrolidine and morpholine enamines of 2-methylcyclohexanone does not exceed 58%, whereas the C-2 unsubstituted ketones underwent enamine formation under rather milder conditions in better than 80 % yield. [Pg.11]

In their original communication on the alkylation and acylation of enamines, Stork et al. (3) had reported that the pyrrolidine enamine of cyclohexanone underwent monoacylation with acid chlorides. For example, the acylation with benzoyl chloride led to monobenzoylcyclohexanone. However, Hunig and Lendle (33) found that treatment of the morpholine enamine of cyclopentanone with 2 moles of propionyl chloride followed by acid hydrolysis gave the enol ester (56), which was proposed to have arisen from the intermediate (55). [Pg.20]

In the five-membered ring compounds, much less is known about the position of the double bond in the enamincs of 3-alkyl ketones. Demole and Stoll 43) carried out the alkylation of the pyrrolidine enamine of methyl 1 -oxo-3-cyclopentylacetate (81) with bromopentyne-2 to give a 4 5 mixture of C-2 and C-5 alkylated products (82 and 83). [Pg.26]

The pyrrolidine enamines of /l -3.]cetosteroids (111), on alkylation with methyl iodide, gave mainly the N-alkylated product (5,55) in nonpolar solvents such as benzene. The reaction in more polar solvents gave the 4-methylated product (5.S). The reaction of (111) with perchloryl fluoride involves attack at the C-4 atom to give, after acid hydrolysis, either 4-fluoro-zJ -3-ketone (119) or 4,4-difluoro-zJ -3-ketone 120), depending on the reaction conditions (59). [Pg.34]

The general rule has been formulated (P) that the less substituted enamine is formed from unsymmetrical ketones such as the 2-alkylcyclohexanones. In enamine 21 the R, group and the N-alkyl groups would interfere with one another if overlap is to be maintained between the nitrogen unshared electrons and the double bond. There would be less repulsion if the isomeric enamine (22) were formed. 2-Phenylcyclohexanone and pyrrolidine with p-toluenesulfonic acid as catalyst in refluxing benzene gave enamine... [Pg.63]

Experimental evidence, obtained in protonation (3,6), acylation (1,4), and alkylation (1,4,7-9) reactions, always indicates a concurrence between electrophilic attack on the nitrogen atom and the -carbon atom in the enamine. Concerning the nucleophilic reactivity of the j3-carbon atom in enamines, Opitz and Griesinger (10) observed, in a study of salt formation, the following series of reactivities of the amine and carbonyl components pyrrolidine and hexamethylene imine s> piperidine > morpholine > cthyl-butylamine cyclopentanone s> cycloheptanone cyclooctanone > cyclohexanone monosubstituted acetaldehyde > disubstituted acetaldehyde. [Pg.102]

With enamines of cyclic ketones direct C alkylation occurs with allyl and propargyl as well as alkyl halides. The reaction is again sensitive to the polarity of the solvent (29). The pyrrolidine enamine of cyclohexanone on reaction with ethyl iodide in dioxane gave 25% of 2-ethylcyclohexanone on hydrolysis, while in chloroform the yield was increased to 32%. [Pg.121]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

The formation of 65 must have taken place via the normal alkylation product (66) which undergoes hydrolysis with water followed by reaction of pyrrolidine with the more reactive aldehyde group to give an intermediate (67), which can then cyclize to give the observed product (65). [Pg.128]

At higher temperatures the mixture of 10 and methyl vinyl ketone yields the 1,4-carbocyclic compound as described previously. Methyl isopropenyl ketone (5), ethyl acetylacrylate (d), 2-cyclohexenone (21), and 1-acetyl-1-cyclohexene (22) also undergo this type of cyclization reaction with enamines at higher temperatures. This cycloalkylation reaction occurs with enamines made of strongly basic amines such as pyrrolidine, but the less reactive morpholine enamine combines with methyl vinyl ketone to give only a simple alkylated product (7). Chlorovinyl ketones yield pyrans when allowed to react with the enamines of either alicyclic ketones or aldehydes (23). [Pg.216]

The reaction of methyl propiolate (82) with acyclic enamines produces acyclic dienamines (100), as was the case with dimethyl acetylenedicarboxylate, and the treatment of the pyrrolidine enamines of cycloheptanone, cyclooctanone, cycloundecanone, and cyclododecanone with methyl propiolate results in ring enlargement products (100,101). When the enamines of cyclohexanone are allowed to react with methyl propiolate, rather anomalous products are formed (100). The pyrrolidine enamine of cyclopentanone forms stable 1,2-cycloaddition adduct 83 with methyl propiolate (82). Adduct 83 rearranges to the simple alkylation product 84 upon standing at room temperature, and heating 83 to about 90° causes ring expansion to 85 (97,100). [Pg.231]

A pseudo 1,2 cycloaddition (actually a 1,3 cycloaddition, but may be considered a 1,2 type if a three-membered ring is considered analogous to an alkene) is observed when the pyrrolidine enamine of cyclohexanone is allowed to react with N-carbethoxyaziridine (129) to produce octahydro-indole 130 91). Octahydroindoles and pyrrolidines can also be produced through the intramolecular alkylation of the enamines of certain halo-ketourethanes 176a). [Pg.242]

Reduction of l-methyl-2-alkyl-.d -pyrroline and l-methyl-2-alkyl-.d -piperideine perchlorates with complex hydrides prepared in situ by partial decomposition of lithium aluminum hydride with the optically active alcohols (—)-menthol and (—)-borneol affords partially optically active l-methyl-2-alkyl pyrrolidines (153, n = 1) and 1-methy 1-2-alkyl piperideines (153, n = 2), respectively (241,242). [Pg.287]

The illumination of enamines as general activa ting derivatives of ketones in alkylation reactions also threw light on their special usefulness for controlling alkylations (3), particularly in the formation of monosubstituted cyclohexanones. Thus 2-methylcyclohexanone could be obtained in 80% yield from the pyrrolidine enamine of cyclohexanone, and further alkylation, which required more drastic conditions, gave only 2,6-dimethylcyclo-hexanone (1,237). [Pg.346]

Vinylogous amides, which have an enamine function in conjugation with a carbonyl group, constitute tridentate systems and thus open the possibility of alkylation on carbon, nitrogen, or oxygen. It has been found that the pyrrolidine enamine of acetylacetone gives rise to a carbon mcthylation but an oxygen ethylation product 41). The alkylation of cyclic 1,3-diketone-derived enamines has been studied 41,283). O Alkylation was found in alcohol solvents and predominant C alkylation in nonprotonic solvents. [Pg.355]


See other pages where Pyrrolidines alkylation is mentioned: [Pg.346]    [Pg.1013]    [Pg.139]    [Pg.346]    [Pg.1013]    [Pg.139]    [Pg.157]    [Pg.25]    [Pg.133]    [Pg.820]    [Pg.820]    [Pg.40]    [Pg.81]    [Pg.47]    [Pg.71]    [Pg.125]   
See also in sourсe #XX -- [ Pg.3 , Pg.6 , Pg.66 , Pg.69 , Pg.714 ]

See also in sourсe #XX -- [ Pg.714 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.714 ]




SEARCH



2- alkyl]pyrrolidine

2- alkyl]pyrrolidine

Alkylation pyrrolidine

Aminals alkylation reactions, pyrrolidine

Pyrrolidine, 2,5-dimethylcyclohexanone enamine from alkylation

Pyrrolidine, allylanion y-alkylation

Pyrrolidines alkyl

© 2024 chempedia.info