Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral pyrrolidine

A conjugate addition and trapping strategy has emerged as a viable method for forming a chiral center a to a carbonyl by diastereoselective hydrogen atom transfer after initial radical addition to an acrylate. An example shown in Eq. (13.22) uses a C-2 symmetric pyrrolidine chiral auxiliary to induce facial selectivity in the hydrogen atom transfer step [32]. This particular example afforded 89% yield and 25 1 preference for 74. [Pg.519]

Anslyn et have developed a displacement assay to measure the e.e. values of diols (Scheme 6.1). The chiral monoboronic acid sensors were prepared by using o-formyl arylboronic acids and various pyrrolidine chiral secondary amines. Since no fluorophore was used for the construction of the... [Pg.192]

Progress has been made toward enantioselective and highly regioselective Michael type alkylations of 2-cyclohexen-l -one using alkylcuprates with chiral auxiliary ligands, e. g., anions of either enantiomer of N-[2-(dimethylamino)ethyl]ephedrine (E. J. Corey, 1986), of (S)-2-(methoxymethyl)pyrrolidine (from L-proline R. K. EHeter, 1987) or of chiramt (= (R,R)-N-(l-phenylethyl)-7-[(l-phenylethyl)iinino]-l,3,5-cycloheptatrien-l-amine, a chiral aminotro-ponimine G. M. Villacorta, 1988). Enantioselectivities of up to 95% have been reported. [Pg.20]

In peptide syntheses, where partial racemization of the chiral a-carbon centers is a serious problem, the application of 1-hydroxy-1 H-benzotriazole ( HBT") and DCC has been very successful in increasing yields and decreasing racemization (W. Kdnig, 1970 G.C. Windridge, 1971 H.R. Bosshard, 1973), l-(Acyloxy)-lif-benzotriazoles or l-acyl-17f-benzo-triazole 3-oxides are formed as reactive intermediates. If carboxylic or phosphoric esters are to be formed from the acids and alcohols using DCC, 4-(pyrrolidin-l -yl)pyridine ( PPY A. Hassner, 1978 K.M. Patel, 1979) and HBT are efficient catalysts even with tert-alkyl, choles-teryl, aryl, and other unreactive alcohols as well as with highly bulky or labile acids. [Pg.145]

Chiral N,N-disubstituted 2-(aminomethyl)pyrrolidines as catalysts for asymmetric acylation of alcohols 99YGK598. [Pg.247]

Design of chiral catalysis and asymmetric autocatalysis for diphenyl-(l-methyl-pyrrolidin-2-yl) methanol-catalyzed enantioselective additions of organozinc reagents 97YGK994. [Pg.247]

Diastereoselective synthesis of pyrrolidine derivatives using chiral and non-racemic A-cyanomethyloxazolidines 99CSR383. [Pg.247]

Chiral and nonracemic A-cyanomethyloxazolidines in diastereoselective synthesis, particularly of pyrrolidine and piperidine derivatives 99CSR383. [Pg.253]

Thermal cyclization of 2-vinyl-N,N-dialkylanilines 138 afforded 139 with creation of a new chiral center in 98% purity (89JOC199). In case of pyrrolidine with methyl or methoxymethyl substituent, cyclization with ZnCl2 occurs via an irreversible 1,5-hydrogen shift in boiling acetonitrile (87JA3136) or BuOH (91RTC115) to afford the diastereoisomers 140 (33%), 141 (35%) and 142 (6%) (87JA3136) (Scheme 27). [Pg.92]

Baker s yeast reducdon of y-nitroketones offers the corresponding chiral nitro alcohols, which areusefid bndding blocks for the synthesis of chiral naniral compounds. For example, opdcally acdve 2-subsdnited pyrrolidine can be prepared using the chiral nitro alcohol fEq. 10.751. ... [Pg.351]

Lipophilic ligands, e.g. 45-49 having chiral L-2-pyrrolidine-methanol moieties, have been prepared and examined for their catalytic activities in reactions with optically active esters (50-52). [Pg.167]

Mukaiyama, T., and Asami, A. Chiral Pyrrolidine Diamines as Efficient Ligands in Asymmetric Synthesis. 127,133-167(1985). [Pg.263]

As well as the disubstituted C2-symmelrie pyrrolidines E and F, the monosubstituted (f> )-2-(mcthoxymethyl)pyrrolidine G can be used as chiral auxiliary for the diastereoselecti ve addition of organomctallic reagents to a-oxo amides16. As with the phenylglyoxylic acid derivatives derived from amines E and F. methyllithium or methylmagnesium bromide in diethyl ether preferentially attack the (,S)-mms-conformer 11 (R = ( 6H5), leading to predominant formation of the (2 S)-diastercomer by Re-side attack. [Pg.102]

The first reports on enantioselective addition reactions of achiral organometallic reagents, modified by aprotic chiral additives, described the addition of Grignard reagents to prostereogenic carbonyl compounds in the presence of ( + )-(/ ,/J)-2,3-dimethoxybutane (l)4 5, (-)-tetrahydro-2-methylfuran (2)6, (-)-l-[(tetrahydro-2-furanyl)methyl]pyrrolidine (3)7 or (-)-sparteine (4)8. The enantioselectivity, however, was poor (0-22% ee). [Pg.147]

One of the most intensively studied protic chiral ligands, which moreover allows enantioselectivities of up to 95% ee, is the proline-derived (25 )-l- [(25,)-l-methyl-2-pyrrolidinyl]methyl -2-pyrrolidine methanol (6)19-21. [Pg.150]

Optically active alkynyl alcohols can, however, be conveniently prepared by the addition of dialkylzinc reagents of alkynyl aldehydes catalyzed by the chiral ligand (S)-l-methyl-a,a-diphenyl-2-pyrrolidine methanol33-34. [Pg.182]

S)- and (+ )-(7 )-l-Amino-2-(methoxymethyl)pyrrolidine- (SAMP and RAMP)-hydrazones derived from methyl ketones and chiral hydrazines are metalated regioselectively at the methyl... [Pg.605]

The Michael additions of chiral cycloalkanone imines or enamines, derived from (FV l-l-phcnyl-ethanamine or (5)-2-(methoxymethyl)pyrrolidine, are highly diastereofacially selective reactions providing excellent routes to 2-substituted cycloalkanones. This is illustrated by the addition of the enamine of (S)-2-(methoxymethyl)pyrrolidine and cyclohexanone to 2-(aryl-methylene)-l,3-propanedioates to give, after hydrolysis, the (2 5,a.S )-oxodicstcrs in 35-76% yield with d.r. (2 S,aS)/(2 S,a/ ) 94 6- > 97 3 and 80-95% ee214. [Pg.982]

Asymmetric induction may also derive from chirality in the amine part of the enamine. The reaction of the enamine (S)-l-(l-cyclohexenyl)-2-(methoxymethyl)pyrrolidine with ( )-(2-ni-troethenyl)arenes gives, after hydrolysis, a single diastereomeric product in >90% ee30. [Pg.1023]

The addition of (Z)-3-(alkylamino)-2-butenoic acid esters to nitroalkenes derived from open-chain sugars gave a 50 50 mixture of diastereomeric products 32. The reaction of chiral 2-sub-stituted l-(2-nitroethenyl)pyrrolidines with zinc enolates of 3-substituted tetrahydro-2//-pyran-2-oncs in 1,2-dimethoxyethane at — 78 °C afforded the corresponding 3,3-disubstituted products in 82-96% ee via an addition-elimination process33. The stereochemical course of the reaction was determined by chemical correlation of (S)-( )-3-ethyltetrahydro-3-(2-ni-troethenyl)-2//-pyran-2-one with ( + )-quebrachamine. [Pg.1024]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

Imidazole and its derivatives continued to play an important role in asymmetric processes. Optically active pyrroloimidazoles 26 were prepared by the cycloaddition of homochiral imidazolium ylides with activated alkenes <96TL1707>. This reaction was used in the enantioselective preparation of pyrrolidines <96TL1711>. A review of the use of chiral imidazolidines in asymmetric synthesis was published <96PAC531> and the preparation and use of a new camphor-derived imidazolidinone-type auxiliary 27 was reported < 6TL4565> <96TL6931>. [Pg.155]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

An auxiliary controlled enantioselective route to generate seven-membered ring lactams 75 used the a-alkylation of cyclic hydrazide derivatives 74. Initially, 6-chloro hydrazides 73,bearing the chiral information in the M-amino-pyrrolidine function underwent amidocyclization in the presence of a base. A subse-... [Pg.138]

Scheme 19 Asymmetric synthesis of 2-(l-aminoalkyl)pyrrolidines and 2,2 -dipyrrolidines from chiral imines and iminium ions... Scheme 19 Asymmetric synthesis of 2-(l-aminoalkyl)pyrrolidines and 2,2 -dipyrrolidines from chiral imines and iminium ions...
Scheme 20 Asymmetric synthesis of 2-(l-aminoa]kyl)pyrrolidines by the addition of a chiral silyloxypyrrole to achiral imines... Scheme 20 Asymmetric synthesis of 2-(l-aminoa]kyl)pyrrolidines by the addition of a chiral silyloxypyrrole to achiral imines...

See other pages where Chiral pyrrolidine is mentioned: [Pg.275]    [Pg.252]    [Pg.261]    [Pg.17]    [Pg.275]    [Pg.252]    [Pg.261]    [Pg.17]    [Pg.25]    [Pg.168]    [Pg.115]    [Pg.180]    [Pg.183]    [Pg.828]    [Pg.892]    [Pg.22]    [Pg.98]    [Pg.109]    [Pg.30]    [Pg.27]    [Pg.176]    [Pg.38]    [Pg.175]    [Pg.180]    [Pg.15]   


SEARCH



Addition chiral aminals, pyrrolidine

Chiral aminal-pyrrolidine

Chiral auxiliaries Pyrrolidines, 2,5-disubstituted

Chiral auxiliary (also 2-methoxymethyl pyrrolidine

Chiral auxiliary (also pyrrolidines

Chiral auxiliary pyrrolidine derivative

Chiral compounds, Amino acids pyrrolidine

Chiral lithiated pyrrolidine

Chiral pyrrolidine derivative

Chiral pyrrolidine substituents

Chiral pyrrolidines synthesis from carbohydrates

Chirality transfer pyrrolidine

Pyrrolidine 2- -: chiral ligand

Pyrrolidine catalysts chiral

Pyrrolidine, chiral copper ligand

Pyrrolidines chiral auxiliaries

Pyrrolidines chiral catalysts

Pyrrolidines chiral lithium amides

Pyrrolidines derivatives, chiral

Pyrrolidines quaternary chiral centers

Pyrrolidines, chiral

Pyrrolidines, chiral

© 2024 chempedia.info