Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrole, alkylation basicity

Even less dangerous in this respeet are the nitrating systems using alkyl nitrates and sodium ethoxide. Noteworthy examples of the use of these less acidic or basic nitrating systems are found in the pyrrole series. [Pg.2]

Although only ppm levels of nitrogen are found in the mid-distillates, both neutral and basic nitrogen compounds have been isolated and identified in fractions boiling below 345°C (12). Pyrroles and indoles account for about two-thirds of the nitrogen. The remaining nitrogen is found in the basic pyridine and quinoline compounds. Most of these compounds are alkylated. [Pg.170]

A comparison of the relative basicities of pyrrole, furan and thiophene may be made by comparing the pK values of their 2,5-di-t-butyl derivatives, which were found to be -1.01, —10.01 and —10.16, respectively. In each case protonation was shown by NMR to occur at position 2. The base-strengthening effect of alkyl substitution is clearly apparent by comparison of pyrrole and its alkyl derivatives, e.g. A-methylpyrrole has a pKa. for a-protonation of -2.9 and 2,3,4,5-tetramethylpyrrole has a pK of 4-3.7. In general, protonation of a-alkylpyrroles occurs at the a -position whereas /3-alkylpyrroles are protonated at the adjacent a-position. As expected, electron-withdrawing groups are base-weakening thus A-phenylpyrrole is reported to have a p/sTa of -5.8. The IR spectrum of the hydrochloride of 2-formylpyrrole indicates that protonation occurs mainly at the carbonyl oxygen atom and only to a limited extent at C-5. [Pg.47]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

Alternatively, Ballini devised a new strategy to synthesize tri-alkylated pyrroles from 2,5-dialkylfurans and nitroalkanes <00SL391>. This method involves initial oxidation of 2,5-dimethylfuran with magnesium monoperoxyphthalate to cA-3-hexen-2,5-dione (6). Conjugate addition of the nitronate anion derived from the nitro compound 7 to 6 followed by chemoselective hydrogenation of the C-C double bond of the resulting enones 8 (obtained by elimination of nitrous acid from the Michael adduct) completes the conversion to the alkylated y-diketones 9. Final cyclization to pyrroles 10 featured improved Paal-Knorr reaction conditions involving reaction of the diketones with primary amines in a bed of basic alumina in the absence of solvent. [Pg.112]

The two-phase alkylation reactions have been extended to the acylation of simple heteroaromatic systems. Generally, the required conditions are milder than those employed for the alkylation reactions, but an excess of the acylating agent is usually required, owing to its facile hydrolysis in the basic media. Thus, benzimidazole and its 2-alkyl and 2-aryl derivatives have been benzoylated [46], and pyrrole and indole have been converted into a range of A-acyl [47, 48] and A-sulphonyl derivatives [48-53] (Table 5.35 and Table 5.36). [Pg.205]

All this leads to the conclusion that the relative stabilities of the N- and C-protonated forms of enamines are not very different and that relatively minor structural differences or differences of medium favour one form over the other. 2-Alkyl substituents especially favour C-protonation (Hinman, 1968). They certainly greatly enhance the basicity of pyrroles which are C-protonated (see page 358). [Pg.354]

N-Alkyl isoindolo[2,l-fc][2,4]benzodiazepines 190 (R = alkyl. Scheme 38, Section 3.1.1.2) are synthesized by an intramolecular N-acyliminium ion-amide reaction (1997TL2985, 1998T1497). Isothiocyanates 23 undergo under basic conditions in DMF ring closure by an intramolecular substitution between N1 of the pyrrole ring and isothiocyanate group to afford benzo[/]pyrrolo[l,2-c] [l,3]diazepine-5-thiones 25 (Scheme 2, Section 2.1.1.1 (2005BMCL3220)). [Pg.38]

The higher acidity of pyrroles and indoles bearing electron-withdrawing substituents at the a- or /3-positions permits their alkylation under mildly basic conditions, but although the thallium salt of 2-formylpyrrole is Af-alkylated, the corresponding alkylation of the thallium salts of ethyl pyrrole-2-carboxylate yields a complex mixture of products resulting from iV-alkylation and transesterification (B-77MI30502). N-Alkylation of pyrrolyl and indolyl esters is most conveniently effected under phase-transfer conditions. [Pg.236]

The 2H-and 3//-pyrroles and -indoles are considerably more basic than the corresponding H-isomers and they readily undergo alkylation to give the quaternary salts, which are then highly susceptible to nucleophilic attack. Thus, for example, methylation of the trialkyl-3//-indole (507), followed by reaction with aqueous base, yields the indolin-2-ol (508). A similar reaction sequence results from the acylation of (507) under Schotten-Baumann conditions to give (509 X = OH). When the benzoylation is conducted in benzene in the absence of the base, the 2-chloroindoline (509 X = C1) is formed and acylation of (507) with a carboxylic acid anhydride produces the ester (509 X = OCOR) (79HC(25-3)l). [Pg.308]

Dioxacorroles are 18-7r-electron aromatic systems like corroles. They exhibit basicity intermediate between that of porphyrin and corrole, and require 1 h at 100 °C in TFA for complete deuteration of the meso positions. The furan protons are also substituted by deuterium under the same conditions after lOOh. Friedel-Crafts acylation occurs at C-5 while alkyl halides attack on the pyrrolic nitrogens to give a mixture of mono- and di-alkyl derivatives. [Pg.876]

Pyrroles having electron-withdrawing substituents are considerably less basic than alkyl pyrroles. Whereas there appears to be strong UV spectral evidence for the existence of the conjugate acids of... [Pg.411]


See other pages where Pyrrole, alkylation basicity is mentioned: [Pg.8]    [Pg.2150]    [Pg.400]    [Pg.604]    [Pg.87]    [Pg.124]    [Pg.23]    [Pg.196]    [Pg.74]    [Pg.117]    [Pg.690]    [Pg.103]    [Pg.243]    [Pg.206]    [Pg.253]    [Pg.287]    [Pg.289]    [Pg.291]    [Pg.297]    [Pg.301]    [Pg.308]    [Pg.411]    [Pg.105]    [Pg.22]    [Pg.35]    [Pg.130]    [Pg.206]    [Pg.253]    [Pg.287]    [Pg.289]    [Pg.291]    [Pg.297]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Pyrrole basicity

Pyrrole, alkylation

Pyrroles 1- alkyl

Pyrroles alkylation

Pyrroles basicity

© 2024 chempedia.info