Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine reaction with acid chlorides

The reaction with carboxylic acid and acid anhydride is carried out in the presence of a small amount of concentrated sulphuric acid. The reaction is reversible, and therefore, water is removed as soon as it is formed. The reaction with acid chloride is carried out in the presence of a base (pyridine) so as to neutralise HCl which is formed during the reaction. It shifts the equilibrium to the right hand side. The introduction of acetyl (CH3CO) group in alcohols or phenols is known as acetylation. Acetylation of salicylic acid produces aspirin. [Pg.61]

Reaction with acid chlorides. Isucyiinic iicid rends with iicid chlorides in ether or tetrahydrofurane in the presence of pyridine at — 10 to 0 to give acyl isocyanates, usually in good yield. ... [Pg.89]

The dimethyl acetal (94) is readily prepared from the 22-aldehyde (93) by direct reaction with methanol in the presence of hydrogen chloride. Ena-mines (95) are formed without a catalyst even with the poorly reactive piperidine and morpholine.Enol acetates (96) are prepared by refluxing with acetic anhydride-sodium acetate or by exchange with isopropenyl acetate in pyridine.Reaction with acetic anhydride catalyzed by boron trifluoride-etherate or perchloric acid gives the aldehyde diacetate. [Pg.401]

The chiral acetate reagent is readily prepared from methyl mandelate [methyl (A)-hydroxy-phenyl acetate] which is first converted by treatment with phcnylmagnesium bromide into the triphenylglycol783, c (see Section 1.3.4.2.2.2.) and subsequently transformed into the acetate by reaction with acetyl chloride in the presence of pyridine. Thereby, the secondary hydroxyl group of the glycol is esterified exclusively. Both enantiomers of the reagent are readily accessible since both (R)- and (5)-hydroxyphenylacelic acid (mandelic acids) arc industrial products. [Pg.491]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

Carbon-phosphorus double bonds are also formed in addition reactions of tris(trimethylsilyl)phosphine 1692 (which can be readily prepared from white phosphorus, sodium, and TCS 14 [13a,b,c]) to give oxazohum fluorides 1691 which then give the azaphospholes 1694, via 1693 [3, 14]. On addition of 1692 to 1695, the diazaphosphole 1696 [3, 15] is prepared, whereas l,3-azaphospholo[l,2a]pyridines 1698 [16] are formed from 1692 and 1697, and 1,3-thiaphospholes 1700 are formed from the dithiohum fluorides 1699 [17]. l,3-Benzodiphospholyl anions 1703 are generated by reaction of acid chlorides with the dihthium salts 1701, via 1702 [18] (Scheme 11.3). [Pg.254]

PLLA-fr-PCL) multiblock copolymers were prepared from the coupling reaction between the bischloroformates of carboxylated PLLA with diol-terminated PCL in the presence of pyridine [140]. LLA was polymerized with SnOCt2 and 1,6-hexanediol followed by the reaction with succinic anhydride to provide the dicarboxylated PLLA. The carboxyl end groups were subsequently transformed to acid chloride groups by the reaction with thionyl chloride (Scheme 65). As expected, the molecular weight distributions were broad for all samples (1.84 < Mw/Mn < 3.17). [Pg.78]

Acid anhydride formed by the reaction of acid chloride with carboxylic acid inthe presence of pyridine. [Pg.201]

The amides derived from sulphonic acids are called sulphonamides. They are obtained from amines by the reaction with sulphonyl chloride (R SOCl2) in pyridine. [Pg.85]

In the event, iodolactonization of the carboxylate salt derived from the ester 458 afforded 459, and subsequent warming of the iodo lactone 459 with aqueous alkali generated an intermediate epoxy acid salt, which suffered sequential nucleophilic opening of the epoxide moiety followed by relactonization on treatment with methanol and boron trifluoride to deliver the methoxy lactone 460. Saponification of the lactone function in 460 followed by esterification of the resulting carboxylate salt with p-bromophenacylbromide in DMF and subsequent mesylation with methanesulfonyl chloride in pyridine provided 461. The diazoketone 462 was prepared from 461 by careful saponification of the ester moiety using powdered potassium hydroxide in THF followed by reaction with thionyl chloride and then excess diazomethane. Completion of the D ring by cyclization of 462 to the keto lactam 463 occurred spontaneously on treatment of 462 with dry hydrogen chloride. [Pg.339]

Compound 85 was dehydrogenated at 300° over palladium black under reduced pressure to a pyridine derivative 96 which was independently synthesized by the following route. Anisaldehyde (86) was treated with iodine monochloride in acetic acid to give the 3-iodo derivative 87. The Ullmann reaction of 87 in the presence of copper bronze afforded biphenyldialdehyde (88). The Knoevenagel condensation with malonic acid yielded the unsaturated diacid 91. The methyl ester (92) was also prepared alternatively by a condensation of 3-iodoanisaldehyde with malonic acid to give the iodo-cinnamic acid (89), followed by the Ullmann reaction of its methyl ester (90). The cinnamic diester was catalytically hydrogenated and reduced with lithium aluminium hydride to the diol 94. Reaction with phosphoryl chloride afforded an amorphous dichloro derivative (95) which was condensed with 2,6-lutidine in liquid ammonia in the presence of potassium amide to yield pyridine the derivative 96 in 27% yield (53). [Pg.291]

Trifluoroacylketenes, generated by the reaction of acid chlorides with (CF3C0)20 and pyridine, can be trapped by ethyl vinyl ether... [Pg.282]

Another derivative was synthesized starting from 5-aminopyridazine-4-carboxylic acid (156). Its reaction with benzoyl chloride in pyridine gave 2-phenylpyridazino[4,5-[Pg.762]


See other pages where Pyridine reaction with acid chlorides is mentioned: [Pg.16]    [Pg.26]    [Pg.259]    [Pg.349]    [Pg.1103]    [Pg.931]    [Pg.5]    [Pg.674]    [Pg.219]    [Pg.312]    [Pg.359]    [Pg.114]    [Pg.309]    [Pg.216]    [Pg.92]    [Pg.123]    [Pg.1268]    [Pg.1533]    [Pg.22]    [Pg.452]    [Pg.826]    [Pg.205]    [Pg.225]    [Pg.1286]    [Pg.462]    [Pg.326]    [Pg.159]    [Pg.425]    [Pg.6]    [Pg.140]    [Pg.465]    [Pg.184]    [Pg.176]    [Pg.322]    [Pg.115]    [Pg.8]    [Pg.205]   
See also in sourсe #XX -- [ Pg.842 ]




SEARCH



Acid chlorides, reactions

Chloride reaction with acid

Pyridination reaction

Pyridine with

Pyridine, reactions

Pyridines acidity

Reactions, with pyridine

© 2024 chempedia.info