Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine derivatives complexes

There is another important factor in the low reactivity of pyridine derivatives toward electrophilic substitution. The —N=CH— unit is basic because the electron pair on nitrogen is not part of the aromatic n system. The nitrogen is protonated or complexed with a Lewis acid under many of the conditions typical of electrophilic substitution reactions. The formal positive charge present at nitrogen in such species further reduces the reactivity toward electrophiles. [Pg.570]

Transition metal complex-mediated hydroacylation of pyridine derivatives with aldehydes 99SL1. [Pg.257]

In 1997 the application of two different chiral ytterbium catalysts, 55 and 56 for the 1,3-dipolar cycloaddition reaction was reported almost simultaneously by two independent research groups [82, 83], In both works it was observed that the achiral Yb(OTf)3 and Sc(OTf)3 salts catalyze the 1,3-dipolar cycloaddition between nitrones 1 and alkenoyloxazolidinones 19 with endo selectivity. In the first study 20 mol% of the Yb(OTf)2-pyridine-bisoxazoline complex 55 was applied as the catalyst for reactions of a number of derivatives of 1 and 19. The reactions led to endo-selective 1,3-dipolar cycloadditions giving products with enantioselectivities of up to 73% ee (Scheme 6.38) [82]. In the other report Kobayashi et al. described a... [Pg.239]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

The comparison of a bis(imino)pyridine iron complex and a pyridine bis (oxazoline) iron complex in hydrosilylation reactions is shown in Scheme 24 [73]. Both iron complexes showed efficient activity at 23°C and low to modest enantioselectivites. However, the steric hindered acetophenone derivatives such as 2, 4, 6 -trimethylacetophenone and 4 -ferf-butyl-2, 6 -dimethylacetophenone reacted sluggishly. The yields and enantioselectivities increased slightly when a combination of iron catalyst and B(CeF5)3 as an additive was used. [Pg.49]

Rayama, A., Rinoshita-Nagaoka, J., Rawano, H., Rameda, S. and Mukuriya, M. (1998) Cycloauration of 2-substituted pyridine derivatives. Synthesis, structure and reactivity of srx-membered cycloaurated complexes of 2-anilino-, 2-phenoxy- and 2-(phenylsulfanyl)-pyridine. Journal of the Chemical Society Dalton Transactions, (24), 4095. [Pg.81]

In contrast to the large number of chiral pyridine derivatives used as ligands of metal complexes in asymmetric catalysis, only a few examples of chiral sulfur-containing pyridine ligands have so far been reported, such as pyridine thioethers derived from ( + )-camphor depicted in Scheme 1.33, which were assessed in the test reaction providing enantioselectivities of up to 76% ee. The related 2,2 -bipyridine thioethers were also prepared but showed a lower stereodilferentiating capability in the test reaction. [Pg.32]

A series of mixed-ligand thiosalicylato complexes of the type PtL(PPh3)Y2] (Y2 = thiosalicylate L = pyridine, 4-methylpyridine, picolinic acid hydrazide, imidazole) have been prepared by the reaction of [PtCl2(COD)] with PPh3, thiosalicylic acid, and A-donor ligand in MeOH solution.375 The X-ray structure of the pyridine derivative (162) was determined, the first example of where a platinum atom is coordinated to a N, O, P, and S donor atom set. [Pg.721]

Most of the substrates that give both types of cycloaurated complexes are limited to pyridine derivatives, although recently a few exceptions have been reported with thiazoles and imidazoles. The reaction of substituted pyridine ligands such as phpy,1 49,1924 2-benzoyl pyridine,1924 2-anili-nopyridine,1925,1926 l-(2-pyridylamino and 2-pyrimidinylamino)naphthalene, 7 2-phenoxypyri-dine,1811 2-(phenylsulfanyl)pyridine,1925 2-(2-thienyl)pyridine, 8 2-(3-thienyl)pyridine,1928 2-(alkylsulfanyl)pyridine,1929 or papavorine1930 at room temperature yields the nonmetallated compounds which, upon heating, are transformed into the metallated complexes [Au(N,C)Cl2], The process with phpy is illustrated in Scheme 21. [Pg.1010]

Calorimetry investigations of zinc ions with functionalized pyridines have been carried out in both dimethylformamide and acetonitrile. The pyridines used were pyridine, 3-methylpyridine, and 4-methylpyridine. In DMF, for all three pyridines, four- and six-coordinate species formed and their formation constants, reaction enthalpies and entropies were determined. The stability increases linearly with increasing basicity of the pyridine derivative. The formation of the 3-methylpyridine complex is enthalpically less favorable and entropically more favorable than... [Pg.1153]

A pyridine derivative related to dien with respect to the number and distribution of N-donor atoms, namely bis(2-pyridylmethyl)amine (bpma), also gives comparable complexes with Cd, e.g., [Cd(bpma)2](C104)2 with potentially three isomers (including a pair of enantiomers). As shown by the structure analysis (C2/c, Z = 4), a distorted octahedral fac-isomer with symmetry 2 —C2 has been isolated, necessarily with both enantiomers in the crystal lattice. No significant difference in the two kinds of Cd—N bonds (rav(Cd—N) 235.0 pm) is observed.189 Solid-state 13C NMR spectra of this complex and related Mn and Zn complexes have been discussed. [Pg.1271]

Pyridine derivatives with additional donor functions and sterically demanding substituents have been used with the intention of producing complexes of Cd (and of other metals) with low coordination number one of these ligands is the tridentate, planar-bonding 2,6-bis[(2,6-dimethyl-phenylimino)methyl] pyridine (pydim a Schiff base derived from 2,6-pyridine dialdehyde), which with Cd(BF4)2 and thiocyanate gives a dinuclear complex [(pydim)Cd(/x-NCS-S,N)]2(BF4)2 with N-dominated coordination sphere.191 As centrosymmetric Plijc, Z= 2), the complex has an antiparallel /x-1,3 NCS double bridge with Cd—N and Cd—S bonds (224.6 pm and 255.5 pm, respectively) the Cd—N(py) bond is clearly shorter than the Cd—N(imino) bonds (225.6 pm and 245.0 pm,... [Pg.1271]

The complex, one of a series of substituted pyridine derivatives, exploded violently during microanalytical combustion. [Pg.1250]

Transition metal complexes have been used in a number of reactions leading to the direct synthesis of pyridine derivatives from acyclic compounds and from other heterocycles. It is pertinent also to describe two methods that have been employed to prepare difficultly accessible 3-alkyl-, 3-formyl-, and 3-acylpyridines. By elaborating on reported194,195 procedures used in aromatic reactions, it is possible to convert 3-bromopyridines to products containing a 3-oxoalkyl function196 (Scheme 129). A minor problem in this simple catalytic process is caused by the formation in some cases of 2-substituted pyridines but this is minimized by using dimethyl-formamide as the solvent.196... [Pg.376]

An intermolecular cyclotrimerization of an acetylenic nitrile was reported to proceed via the same alkyne-tantalum complex. The resultant pyridine derivative was obtained in 73% yield (Scheme 56).210... [Pg.430]

The unusual structure 125 displays an acylborane group the latter was formed from carboxyborane as a complex with secondary or tertiary amines, imidazole, or pyridine derivatives. The synthetic pathway (Scheme 31) consisted in an oxidation with NBS, substitution with cyanide, then treatment with 2-aminopyridine <2004JOM3567>. [Pg.605]

Effectively, this is another example of the addition of a functional aromatic compound to an alkene, as the Murai reaction, but the mechanism is different. Alkyl substituted pyridine derivatives are interesting molecules for pharmaceutical applications. The a-bond metathesis reaction is typical of early transition metal complexes as we have learnt in Chapter 2. [Pg.397]

Among many different complexes that have been synthesized in attempt to mimic the structure and/or functionality of SODs (16-22), the most active SOD mimetics known to date are seven-coordinate Mn(II) complexes with macrocyclic ligands derived from C-substituted pentaazacyclopentadecane [15]aneNs and its pyridine derivative (Scheme 4) (12d,16a,23-25). Some of them possess SOD activity that exceeds the one of native mitochondrial MnSOD, and are the first SOD mimetics which entered clinical trials (12d,16a,23,26-28). A few Fe(III) complexes with the same type of ligands have also been studied and they are one of the best iron-based SOD catalysts (18). It should be stressed that the decomposition of superoxide catalyzed by these complexes has been quantified by direct stopped-fiow method, in the presence of a substantial superoxide excess over catalyst, as a reliable method for determining true SOD activity (29). [Pg.63]

Comparison of the different types of cobalt catalysts shows that the in situ system [Eq.(2)] is most accessible while the Rep-, R(ind)-, and bori-ninato ligands having electron-withdrawing substitutents are the most active. The difference between the 14e" and the 12e core complexes makes itself apparent in the chemoselectivity of the reaction. Catalysts containing a 14-electron core favor pyridine formation, whereas those containing a 12-electron core (i.e., the rj -allylcobalt systems) favor the formation of benzene derivatives by cyclotrimerization of the alkynes. For example, in the reaction of propyne and propionitrile at 140°C in the presence of a 12-electron system (5), a 2 1 ratio of benzene to pyridine product is formed, whereas a catalyst containing the cpCo moiety (a 14-electron system) leads (under identical conditions) to the predominant formation of pyridine derivatives (84HCA1616). [Pg.183]

The insertion of allenes in the palladium-carbon a bond of cyclopalladated pyridine derivative 295 (cf. 00CRV3067) affords stable, isolable (ry -allyl) palladium complexes (e.g., 296) (03JOM(687)313). The ideally located imine unit when depalladated reacts selectively with the allyl functionality to yield methylene morphanthridizinium salts 297a-c. [Pg.118]


See other pages where Pyridine derivatives complexes is mentioned: [Pg.294]    [Pg.321]    [Pg.94]    [Pg.216]    [Pg.107]    [Pg.54]    [Pg.83]    [Pg.81]    [Pg.201]    [Pg.369]    [Pg.401]    [Pg.1166]    [Pg.1270]    [Pg.172]    [Pg.185]    [Pg.314]    [Pg.378]    [Pg.381]    [Pg.7]    [Pg.349]    [Pg.517]    [Pg.158]    [Pg.335]    [Pg.351]    [Pg.366]    [Pg.459]    [Pg.795]    [Pg.398]    [Pg.186]    [Pg.208]    [Pg.75]   
See also in sourсe #XX -- [ Pg.220 , Pg.232 ]




SEARCH



Complexes pyridine

Derivatives complexation

Pyridine derivatives

Pyridine-derived transition metal complexes

Pyridines complexation

Stability constants pyridine derivative complexes

© 2024 chempedia.info