Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purex process fuel dissolution step

An overall schematic view of the Purex process is shown in Figure 16.10. Detailed descriptions of the process can be found in Benedict and co-workers (1981) and Wymer and Vondra (1981). We shall briefly summarize the important steps. The first step is to prepare the irradiated fuel for dissolution by mechanically chopping it into small pieces ( 1—5 cm). This opening of the cladding causes the... [Pg.481]

Reprocessing is based on liquid-liquid extraction for the recovery of uranium and plutonium from used nuclear fuel (PUREX process). The spent fuel is first dissolved in nitric acid. After the dissolution step and the removal of fine insoluble solids, an organic solvent composed of 30% TriButyl Phosphate (TBP) in TetraPropylene Hydrogenated (TPH) or Isopar L is used to recover both uranium and plutonium the great majority of fission products remain in the aqueous nitric acid phase. Once separated from the fission products, back-extraction combined with a reduction of Pu(I V) to Pu(III) allows plutonium to be separated from uranium these two compounds can be recycled.2... [Pg.198]

Dissolution, described in Sec. 4.4, produces an aqueous solution of uranyl nitrate, plutonium(IV) nitrate, nitric acid, small concentrations of neptunium, americium, and curium nitrates, and almost all of the nonvolatile fission products in the fuel. With fuel cooled 150 days after bumup of 33,000 MWd/MT, the fission-product concentration is around 1700 Ci/liter. The fint step in the solvent extraction portion of the Purex process is primary decontamination, in which from 99 to 99.9 percent of these fission products are separated from the uranium and plutonium. Early removal of the fission products reduces the amount of required shielding, simplifies maintenance, and facilitates later process operations by reducing solvent degradation from radiolysis. [Pg.484]

Each of these elements may be used for production of nuclear fuel or other purposes. The recovery efficiency for uranium is reported as 99.87% and for plutonium 99.36%-99.51% (NEA 2012). The extended PUREX includes separation of neptunium and technetium as well as recovery of americium and curium that are also separated from each other by additional extraction stages as given in detail in the flowsheet (NEA 2012). The advanced UREX-i-3 process generates six streams after separation uranium for re-enrichment Pu-U-Np for mixed oxide fuel c for managed disposal Am-Cm to be used as burnable poisons and for transmutation high-heat-generating products (Cs and Sr) and a composite vitrified waste with all other fission products. Some fuel types may require preliminary steps like grinding to enable their dissolution. [Pg.104]


See other pages where Purex process fuel dissolution step is mentioned: [Pg.122]    [Pg.135]   
See also in sourсe #XX -- [ Pg.530 ]




SEARCH



Dissolution process

Fuel processing

Fuel processing steps

Fuel steps

Process steps

Purex

© 2024 chempedia.info