Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton excited state

Mavri, J., Berendsen, H.J.C. Calculation of the proton transfer rate using density matrix evolution and molecular dynamics simulations Inclusion of the proton excited states. J. Phys. Chem. 99 (1995) 12711-12717. [Pg.34]

EXCITED-STATE PROTONATION EXCITED-STATE DEPROTONATION... [Pg.101]

It is evident from the non-zero rate for uracil photohydrate formation at high values of pH that the fast reaction of 1(UH+) with water is accompanied by a slower reaction which is presumably the reaction of 1U with water. This type of reaction is apparently quite fast for EU and CU, although still slower than the reaction of the protonated excited state. It is possible that both protonated and neutral excited uridine species react at the same rate. [Pg.436]

Marzocchi M P, Mantini A R, Casu M and Smulevich G 1997 Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis J. Chem. Phys. 108 1-16... [Pg.1227]

Chudoba C, Riedle E, Pfeiffer M and Elsaesser T 1996 Vibrational coherence in ultrafast excited-state proton transfer Cham. Phys. Lett. 263 622-8... [Pg.1998]

We further make the following tentative conjecture (probably valid only under restricted circumstances, e.g., minimal coupling between degrees of freedom) In quantum field theories, too, the YM residual fields, A and F, arise because the particle states are truncated (e.g., the proton-neutron multiplet is an isotopic doublet, without consideration of excited states). Then, it is within the truncated set that the residual fields reinstate the neglected part of the interaction. If all states were considered, then eigenstates of the form shown in Eq. (90) would be exact and there would be no need for the residual interaction negotiated by A and F. [Pg.158]

Although protons and neutrons are not emitted from the ground states of these isotopes, there are many cases where particles are emitted from excited states. For example, Cs decays by electron capture and -emission to excited levels ia and ia 7% of these cases protons are emitted from... [Pg.451]

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition, induced by a picosecond laser pulse, populates the initial well of the excited Si state. The reverse optical transition, observed as the fluorescence band Fj, is accompanied by proton transfer to the second well with lower energy. This transfer is registered as the appearance of another fluorescence band, F2, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of the relative intensities of these bands in dual fluorescence. The experimental data obtained by this method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen transfer in the excited state of... [Pg.109]

Discussion of topics corresponding to proton transfer occurring in the excited state are included under Fluorescence Spectroscopy and Excited... [Pg.22]

VIIL Fluorescence Spectroscopy and Excited State Proton Transfer... [Pg.53]

Excited State Proton Transfer Main Authors Contribution (Listed by Reference)... [Pg.54]

Absorption and emission spectra of six 2-substituted imidazo[4,5-/]quinolines (R = H, Me, CH2Ph, Ph, 2-Py, R = H CH2Ph, R = Ph) were studied in various solvents. These studies revealed a solvent-independent, substituent-dependent character of the title compounds. They also exhibited bathochromic shifts in acidic and basic solutions. The phenyl group in the 2-position is in complete conjugation with the imidazoquinoline moiety. The fluorescence spectra of the compounds exhibited a solvent dependency, and, on changing to polar solvents, bathochromic shifts occur. Anomalous bathochromic shifts in water, acidic solution, and a new emission band in methanol are attributed to the protonated imidazoquinoline in the excited state. Basic solutions quench fluorescence (87IJC187). [Pg.239]

As in the case of benzothiazoles and benzimidazoles, the excited-state proton transfer in 2-(2 -hydroxyphenyl)benzoxazole was studied both experimentally and computationally. The results closely resemble the observations for the other species The cw-enol form is preferred in the Sq ground state and the cw-keto form in the 5i excited state. Moreover, the proton transfer appears to be due to vibrational relaxation rather than thermal activation, suggesting that the aromatic ring has an impact on the transfer reaction of these systems [95JPC12456, 99JST255]. [Pg.19]

The amide group of coelenteramide is an extremely weak acid thus, it will be rapidly protonated in a neutral protic environment, changing into its neutral (unionized) form. If the rate of the protonation of the excited amide anion is sufficiently fast in comparison with the rate of its de-excitation, a part or most of the excited amide anion will be converted into the excited neutral species within the lifetime of the excited state of the amide anion, resulting in a light emission from the excited neutral coelenteramide (kmax about 400 nm). [Pg.170]

At its best, the study of solvent kies by the formalism given can be used to learn about proton content and activation in the transition state. For this reason it is known as the proton inventory technique. The kinetics of decay of the lowest-energy electronic excited state of 7-azaindole illustrates the technique.25 Laser flash photolysis techniques (Section 11.6) were used to evaluate the rate constant for this very fast reaction. From the results it was suggested that, in alcohol, a double-proton tautomerism was mediated by a single molecule of solvent such that only two protons are involved in the transition state. In water, on the other hand, the excited state tautomerism is frustrated such that two water molecules may play separate roles. Diagrams for possible transition states that can be suggested from the data are shown, where of course any of the H s might be D s. [Pg.219]

Note that prior applications of the proton inventory technique were to reactants in their ground states. The particular example cited, however, refers to an excited state molecule (and indeed was the first of its kind). An implicit assumption made in the... [Pg.219]


See other pages where Proton excited state is mentioned: [Pg.130]    [Pg.30]    [Pg.130]    [Pg.342]    [Pg.130]    [Pg.30]    [Pg.130]    [Pg.342]    [Pg.23]    [Pg.1591]    [Pg.1982]    [Pg.2953]    [Pg.5]    [Pg.14]    [Pg.21]    [Pg.21]    [Pg.774]    [Pg.431]    [Pg.101]    [Pg.65]    [Pg.53]    [Pg.54]    [Pg.56]    [Pg.64]    [Pg.131]    [Pg.282]    [Pg.282]    [Pg.282]    [Pg.284]    [Pg.95]    [Pg.151]    [Pg.22]    [Pg.738]   
See also in sourсe #XX -- [ Pg.185 , Pg.208 , Pg.209 , Pg.316 , Pg.317 ]




SEARCH



Protonated state

Protonation state

© 2024 chempedia.info