Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Principal component analysis matrix

The essential degrees of freedom are found by a principal component analysis of the position correlation matrix Cy of the cartesian coordinate displacements Xi with respect to their averages xi), as gathered during a long MD run ... [Pg.22]

The important underlying components of protein motion during a simulation can be extracted by a Principal Component Analysis (PGA). It stands for a diagonalization of the variance-covariance matrix R of the mass-weighted internal displacements during a molecular dynamics simulation. [Pg.73]

Step 2 This ensemble is subjected to a principal component analysis (PCA) [61] by diagonalizing the covariance matrix C G x 7Z, ... [Pg.91]

PCR is a combination of PCA and MLR, which are described in Sections 9.4.4 and 9.4.3 respectively. First, a principal component analysis is carried out which yields a loading matrix P and a scores matrix T as described in Section 9.4.4. For the ensuing MLR only PCA scores are used for modeling Y The PCA scores are inherently imcorrelated, so they can be employed directly for MLR. A more detailed description of PCR is given in Ref. [5. ... [Pg.448]

A method of resolution that makes a very few a priori assumptions is based on principal components analysis. The various forms of this approach are based on the self-modeling curve resolution developed in 1971 (55). The method requites a data matrix comprised of spectroscopic scans obtained from a two-component system in which the concentrations of the components are varying over the sample set. Such a data matrix could be obtained, for example, from a chromatographic analysis where spectroscopic scans are obtained at several points in time as an overlapped peak elutes from the column. [Pg.429]

In general, two related techniques may be used principal component analysis (PCA) and principal coordinate analysis (PCoorA). Both methods start from the n X m data matrix M, which holds the m coordinates defining n conformations in an m-dimensional space. That is, each matrix element Mg is equal to q, the jth coordinate of the /th conformation. From this starting point PCA and PCoorA follow different routes. [Pg.87]

Principal component analysis (PCA) takes the m-coordinate vectors q associated with the conformation sample and calculates the square m X m matrix, reflecting the relationships between the coordinates. This matrix, also known as the covariance matrix C, is defined as... [Pg.87]

A distance geometry calculation consists of two major parts. In the first, the distances are checked for consistency, using a set of inequalities that distances have to satisfy (this part is called bound smoothing ) in the second, distances are chosen randomly within these bounds, and the so-called metric matrix (Mij) is calculated. Embedding then converts this matrix to three-dimensional coordinates, using methods akin to principal component analysis [40]. [Pg.258]

Usually, the raw data in a matrix are preprocessed before being submitted to multivariate analysis. A common operation is reduction by the mean or centering. Centering is a standard transformation of the data which is applied in principal components analysis (Section 31.3). Subtraction of the column-means from the elements in the corresponding columns of an nxp matrix X produces the matrix of... [Pg.43]

In a general way, we can state that the projection of a pattern of points on an axis produces a point which is imaged in the dual space. The matrix-to-vector product can thus be seen as a device for passing from one space to another. This property of swapping between spaces provides a geometrical interpretation of many procedures in data analysis such as multiple linear regression and principal components analysis, among many others [12] (see Chapters 10 and 17). [Pg.53]

In the previous section we have developed principal components analysis (PCA) from the fundamental theorem of singular value decomposition (SVD). In particular we have shown by means of eq. (31.1) how an nxp rectangular data matrix X can be decomposed into an nxr orthonormal matrix of row-latent vectors U, a pxr orthonormal matrix of column-latent vectors V and an rxr diagonal matrix of latent values A. Now we focus on the geometrical interpretation of this algebraic decomposition. [Pg.104]

The application of principal components regression (PCR) to multivariate calibration introduces a new element, viz. data compression through the construction of a small set of new orthogonal components or factors. Henceforth, we will mainly use the term factor rather than component in order to avoid confusion with the chemical components of a mixture. The factors play an intermediary role as regressors in the calibration process. In PCR the factors are obtained as the principal components (PCs) from a principal component analysis (PC A) of the predictor data, i.e. the calibration spectra S (nxp). In Chapters 17 and 31 we saw that any data matrix can be decomposed ( factored ) into a product of (object) score vectors T(nxr) and (variable) loadings P(pxr). The number of columns in T and P is equal to the rank r of the matrix S, usually the smaller of n or p. It is customary and advisable to do this factoring on the data after columncentering. This allows one to write the mean-centered spectra Sq as ... [Pg.358]

However, there is a mathematical method for selecting those variables that best distinguish between formulations—those variables that change most drastically from one formulation to another and that should be the criteria on which one selects constraints. A multivariate statistical technique called principal component analysis (PCA) can effectively be used to answer these questions. PCA utilizes a variance-covariance matrix for the responses involved to determine their interrelationships. It has been applied successfully to this same tablet system by Bohidar et al. [18]. [Pg.618]

Probability that the analyte A is present in the test sample Conditional probability probability of an event B on the condition that another event A occurs Probability that the analyte A is present in the test sample if a test result T is positive Score matrix (of principal component analysis)... [Pg.14]

Principal Component Analysis (PCA) PCA is used to recognize patterns in data and reduce the dimensionality of the problem. Let the matrix A now represent data with the columns of A representing different samples and the rows representing different variables. The covariance matrix is defined as... [Pg.42]

We now have the data necessary to calculate the singular value decomposition (SVD) for matrix A. The operation performed in SVD is sometimes referred to as eigenanal-ysis, principal components analysis, or factor analysis. If we perform SVD on the A matrix, the result is three matrices, termed the left singular values (LSV) matrix or the V matrix the singular values matrix (SVM) or the S matrix and the right singular values matrix (RSV) or the V matrix. [Pg.109]

We now have enough information to find our Scores matrix and Loadings matrix. First of all the Loadings matrix is simply the right singular values matrix or the V matrix this matrix is referred to as the P matrix in principal components analysis terminology. The Scores matrix is calculated as... [Pg.109]

Note the Scores matrix is referred to as the T matrix in principal components analysis terminology. Let us look at what we have completed so far by showing the SVD calculations in MATLAB as illustrated in Table 22-1. [Pg.109]

The scope of Principal Component Analysis (PCA) is a consistent portrayal of a data set in a representation space. Mathematically, PCA is a linear transformation that may be described as S=WX. Here X is the original data set, W is the transformation matrix, and S are the data in the representation space. PCA is the simplest and most widely used method of multivariate analysis. Nonetheless, most users are seldom aware of its assumptions and sometimes results are badly interpreted. [Pg.154]

Now comes the very principle of the principal component analysis. A total variance is now defined as the trace of the matrix Sx or, using a property of the trace of a matrix product given in Section 2.2... [Pg.218]

Principal component analysis (PCA) is aimed at explaining the covariance structure of multivariate data through a reduction of the whole data set to a smaller number of independent variables. We assume that an m-point sample is represented by the nxm matrix X which collects i=l,...,m observations (measurements) xt of a column-vector x with j=, ...,n elements (e.g., the measurements of n=10 oxide weight percents in m = 50 rocks). Let x be the mean vector and Sx the nxn covariance matrix of this sample... [Pg.237]

Principal component analysis (PCA) can be considered as the mother of all methods in multivariate data analysis. The aim of PCA is dimension reduction and PCA is the most frequently applied method for computing linear latent variables (components). PCA can be seen as a method to compute a new coordinate system formed by the latent variables, which is orthogonal, and where only the most informative dimensions are used. Latent variables from PCA optimally represent the distances between the objects in the high-dimensional variable space—remember, the distance of objects is considered as an inverse similarity of the objects. PCA considers all variables and accommodates the total data structure it is a method for exploratory data analysis (unsupervised learning) and can be applied to practical any A-matrix no y-data (properties) are considered and therefore not necessary. [Pg.73]

Principal Component Analysis (PCA) is the most popular technique of multivariate analysis used in environmental chemistry and toxicology [313-316]. Both PCA and factor analysis (FA) aim to reduce the dimensionality of a set of data but the approaches to do so are different for the two techniques. Each provides a different insight into the data structure, with PCA concentrating on explaining the diagonal elements of the covariance matrix, while FA the off-diagonal elements [313, 316-319]. Theoretically, PCA corresponds to a mathematical decomposition of the descriptor matrix,X, into means (xk), scores (fia), loadings (pak), and residuals (eik), which can be expressed as... [Pg.268]


See other pages where Principal component analysis matrix is mentioned: [Pg.2967]    [Pg.36]    [Pg.426]    [Pg.429]    [Pg.260]    [Pg.274]    [Pg.280]    [Pg.314]    [Pg.45]    [Pg.5]    [Pg.24]    [Pg.166]    [Pg.113]    [Pg.127]    [Pg.250]    [Pg.338]    [Pg.90]    [Pg.278]    [Pg.75]    [Pg.423]    [Pg.267]    [Pg.507]    [Pg.45]    [Pg.316]    [Pg.62]   
See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Component analysis

Matrix component

Principal Component Analysis

Principal analysis

Principal component analysi

© 2024 chempedia.info