Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary decomposition, energy dependence

Similarly to the fluorescence quantum yields, the yields of individual primary decomposition steps generally show considerable excitation energy dependence the yields of the unimolecular H2 and alkane eliminations and also those of the radical-type decompositions show a continuous variation with photon energy [27,39,42,107,115]. In cyclohexane photolysis the sum of the quantum yields of the two primary decompositions described by Reactions (5) and (6) is practically unity between photon energies 7.6 and 11.6 eV yield decreases with the energy, [Pg.382]

The choice of new complexes was guided by some simple considerations. The overall eel efficiency of any compound is the product of the photoluminescence quantum yield and the efficiency of excited state formation. This latter parameter is difficult to evaluate. It may be very small depending on many factors. An irreversible decomposition of the primary redox pair can compete with back electron transfer. This back electron transfer could favor the formation of ground state products even if excited state formation is energy sufficient (13,14,38,39). Taking into account these possibilities we selected complexes which show an intense photoluminescence (0 > 0.01) in order to increase the probability for detection of eel. In addition, the choice of suitable complexes was also based on the expectation that reduction and oxidation would occur in an appropriate potential range. [Pg.160]

The primary reason for the thermal stability or instability of the alkyls and aryls of the lanthanides and actinides is kinetic in nature. As in all kinetic processes, the rate of reaction is dependent upon the activation energy between reactants and products. By considering the various decomposition pathways and factors which enhance or inhibit these pathways one can rationalize the observed sta-bihties of the various complexes. [Pg.60]

Since the ionic states formed by high-energy radiation seem to be the chemically important ones, let us consider their reactions. The reactions between ions and neutral molecules in the gas phase can be studied directly in a mass spectrometer. Under ordinary operating conditions the pressure in the ionizing chamber of the mass spectrometer is about 10 6 mm. and the ions formed have little chance to collide with a molecule during their brief lifetime (10-5 sec.) before collection. Therefore, mainly unimolecular decomposition reactions occur and it is the products of these that are detected. The intensity of these primary ions increases with the first power of the pressure in the ionization chamber. However, when the pressure becomes great enough so that ion molecule collisions can occur readily, additional secondary ions which are the products of these ion molecule Collisions appear. The intensity of these secondary product ions depends on the concentrations of both the molecules and the primary ions, and thus on the square of the pressure. [Pg.189]

Although the picture of the photochemical primary processes in cyclopentanone which has been presented seems self-consistent, a number of minor points still have to be explained. These are (a) the dependence of the ratio of ethylene to cyclobutane on the geometry of the system (6) the puzzling fact that a constant fraction, between 2/10 and 3/10, of the initially excited molecules seem to return to the ground state without decomposition, by a route that is virtually unaffected by pressure. Before this can be explained it is necessary to confirm the value for the quantum yield for decomposition and (c) the fact that 2.5 kcal./mole of energy affects the reaction path profoundly. In the ground state the enthalpies of 2 and 3 differ by 19 kcal./mole at 25° while 3 and 4 may be estimated to differ by 15 to 20 kcal./mole. This phenomenon may be explained when a clear understanding of the excited state of the molecule is obtained. [Pg.92]

The most widely accepted mechanism for electrophilic aromatic substitution involves a change from sp2 to sps hybridization of the carbon under attack, with formation of a species (the Wheland or a complex) which is a real intermediate, i.e., a minimum in the energy-reaction coordinate diagram. In most of cases the rate-determining step is the formation of the a intermediate in other cases, depending on the structure of the substrate, the nature of the electrophile, and the reaction conditions, the decomposition of such an intermediate is kinetically significant. In such cases a positive primary kinetic isotope effect and a base catalysis are expected (as Melander43 first pointed out). [Pg.243]

The primary adducts (156) and (157) of oxazoles with alkenes and alkynes, respectively, are usually too unstable to be isolated. An exception is compound (158), obtained from 5-ethoxy-4-methyloxazole and 4,7-dihydro-l,3-dioxepin, which has been separated into its endo and exo components. If the dienophile is unsymmetrical the cycloaddition can take place in two senses. This is usually the case in the reactions of oxazoles with monosubstituted alkynes with alkenes on the other hand, regioselectivity is observed. Attempts to rationalize the orientation of the major adducts by the use of various MO indices, such as 7r-electron densities or localization energies and by Frontier MO theory (80KGS1255) have not been uniformly successful. A general rule for the reactions of alkyl- and alkoxy-substituted oxazoles is that in the adducts the more electronegative substituent R4 of the dienophile occupies the position shown in formula (156). The primary adducts undergo a spontaneous decomposition, whose outcome depends on the nature of the groups R and on whether alkenes or alkynes have been employed. [Pg.195]

Photodecomposition. Since the last review of photochemistry of HFA (61), there has been a great deal of effort expended in the study of the primary processes and decomposition modes of HFA. The photodecomposition products observed appear to be carbon monoxide and hexafluoroethane exclusively. The trifluoroacetyl radical, CF3CO, must be very unstable. As in acetone, it has been proposed that the decomposition processes must overcome an energy barrier, as temperature-dependent quantum yields were observed (252). A detailed mechanism that takes into account a vibrational deactivation cascade has been proposed by several authors (34,35,97,252). [Pg.60]

Decomposition step (9) is strongly supported by the above results. The high triplet yields found at 3650 A led us to the conclusion that step (10) also plays a significant role at this wavelength. The considerable temperature dependence of the phosphorescence shows that the reaction has a high activation energy 13, u 9,242 Since, at 3650 A, the primary quantum yields are independent of the light intensity... [Pg.358]


See other pages where Primary decomposition, energy dependence is mentioned: [Pg.382]    [Pg.731]    [Pg.116]    [Pg.453]    [Pg.386]    [Pg.687]    [Pg.52]    [Pg.280]    [Pg.41]    [Pg.253]    [Pg.154]    [Pg.490]    [Pg.122]    [Pg.386]    [Pg.67]    [Pg.452]    [Pg.88]    [Pg.63]    [Pg.23]    [Pg.405]    [Pg.67]    [Pg.1975]    [Pg.193]    [Pg.322]    [Pg.28]    [Pg.154]    [Pg.579]    [Pg.490]    [Pg.53]    [Pg.70]    [Pg.326]    [Pg.395]    [Pg.211]    [Pg.45]    [Pg.452]    [Pg.107]    [Pg.851]    [Pg.163]    [Pg.312]   
See also in sourсe #XX -- [ Pg.382 , Pg.383 ]




SEARCH



Decomposition energy

Decomposition, dependence

Energy primary

Energy-dependent

© 2024 chempedia.info