Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy other

Apart from the distance variable x that Dunham used in his function V(x) for potential energy, other variables are amenable to production of term coefficients in symbolic form as functions of the corresponding coefficients in a power series of exactly the same form as in formula 16. Through any method to derive algebraic expressions for Dunham coefficients l j, the hamiltonian might have x as its distance variable, but after those expressions are produced they are convertible to contain coefficients of other variables possessing more convenient properties. To replace x, two defined variables are y [38],... [Pg.261]

The work of gravitational forces has already been included as potential energy. Other types of work, e.g., those due to electromagnetic forces, are excluded in this analysis. [Pg.695]

However it should be kept in mind that Equation (17) is a special form of a general interaction potential equation. For interaction potential energies other than gravitational, a general form of Equation (15) must be used so that... [Pg.20]

Face-centered cubic crystals of rare gases are a useful model system due to the simplicity of their interactions. Lattice sites are occupied by atoms interacting via a simple van der Waals potential with no orientation effects. The principal problem is to calculate the net energy of interaction across a plane, such as the one indicated by the dotted line in Fig. VII-4. In other words, as was the case with diamond, the surface energy at 0 K is essentially the excess potential energy of the molecules near the surface. [Pg.264]

Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]). Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]).
Because of the general difficulty encountered in generating reliable potentials energy surfaces and estimating reasonable friction kernels, it still remains an open question whether by analysis of experimental rate constants one can decide whether non-Markovian bath effects or other influences cause a particular solvent or pressure dependence of reaction rate coefficients in condensed phase. From that point of view, a purely... [Pg.852]

State I ) m the electronic ground state. In principle, other possibilities may also be conceived for the preparation step, as discussed in section A3.13.1, section A3.13.2 and section A3.13.3. In order to detemiine superposition coefficients within a realistic experimental set-up using irradiation, the following questions need to be answered (1) Wliat are the eigenstates (2) What are the electric dipole transition matrix elements (3) What is the orientation of the molecule with respect to the laboratory fixed (Imearly or circularly) polarized electric field vector of the radiation The first question requires knowledge of the potential energy surface, or... [Pg.1059]

Figure B3.4.1. The potential surfaee for the eollinear D + H2 DH + H reaetion (this potential is the same as for H + H2 — H2 + H, but to make the produets and reaetants identifieation elearer the isotopieally substituted reaetion is used). The D + H2 reaetant arrangement and the DH + H produet arrangement are denoted. The eoordinates are r, the H2 distanee, and R, the distanee between the D and the H2 eentre of mass. Distanees are measured in angstroms the potential eontours shown are 4.7 eV-4.55 eV,.. ., -3.8 eV. (The potential energy is zero when the partieles are far from eaeh other. Only the first few eontours are shown.) For referenee, the zero-point energy for H2 is -4.47 eV, i.e. 0.27 eV above the H2 potential minimum (-4.74 eV) the room-temperature thennal kinetie energy is approximately 0.03 eV. The graph uses the aeeiirate Liu-Seigbalm-Triihlar-Horowitz (LSTH) potential surfaee [195]. Figure B3.4.1. The potential surfaee for the eollinear D + H2 DH + H reaetion (this potential is the same as for H + H2 — H2 + H, but to make the produets and reaetants identifieation elearer the isotopieally substituted reaetion is used). The D + H2 reaetant arrangement and the DH + H produet arrangement are denoted. The eoordinates are r, the H2 distanee, and R, the distanee between the D and the H2 eentre of mass. Distanees are measured in angstroms the potential eontours shown are 4.7 eV-4.55 eV,.. ., -3.8 eV. (The potential energy is zero when the partieles are far from eaeh other. Only the first few eontours are shown.) For referenee, the zero-point energy for H2 is -4.47 eV, i.e. 0.27 eV above the H2 potential minimum (-4.74 eV) the room-temperature thennal kinetie energy is approximately 0.03 eV. The graph uses the aeeiirate Liu-Seigbalm-Triihlar-Horowitz (LSTH) potential surfaee [195].
There are other important properties tliat can be measured from microwave and radiofrequency spectra of complexes. In particular, tire dipole moments and nuclear quadmpole coupling constants of complexes may contain useful infonnation on tire stmcture or potential energy surface. This is most easily seen in tire case of tire dipole moment. The dipole moment of tire complex is a vector, which may have components along all tire principal inertial axes. [Pg.2442]

Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

Over the next few years, both the mid-infrared and the far-infrared spectra for Ar-HF and Ar-HCl were extended to numerous other bands and to other isotopic species (most importantly those containing deuterium). In 1992, Hutson [18, 39] combined all the available spectroscopic data to produce definitive potential energy surfaces that included both the angle dependence and the dependence on the HF/HCl monomer vibrational quantum number v... [Pg.2448]

The vibrationally excited states of H2-OH have enough energy to decay either to H2 and OH or to cross the barrier to reaction. Time-dependent experiments have been carried out to monitor the non-reactive decay (to H2 + OH), which occurs on a timescale of microseconds for H2-OH but nanoseconds for D2-OH [52, 58]. Analogous experiments have also been carried out for complexes in which the H2 vibration is excited [59]. The reactive decay products have not yet been detected, but it is probably only a matter of time. Even if it proves impossible for H2-OH, there are plenty of other pre-reactive complexes that can be produced. There is little doubt that the spectroscopy of such species will be a rich source of infonnation on reactive potential energy surfaces in the fairly near future. [Pg.2451]


See other pages where Potential energy other is mentioned: [Pg.209]    [Pg.209]    [Pg.324]    [Pg.209]    [Pg.209]    [Pg.198]    [Pg.209]    [Pg.209]    [Pg.324]    [Pg.209]    [Pg.209]    [Pg.198]    [Pg.242]    [Pg.703]    [Pg.16]    [Pg.17]    [Pg.34]    [Pg.35]    [Pg.137]    [Pg.137]    [Pg.200]    [Pg.201]    [Pg.245]    [Pg.250]    [Pg.390]    [Pg.870]    [Pg.877]    [Pg.878]    [Pg.879]    [Pg.887]    [Pg.1006]    [Pg.1006]    [Pg.1022]    [Pg.1056]    [Pg.1169]    [Pg.1200]    [Pg.1255]    [Pg.1957]    [Pg.2059]    [Pg.2227]    [Pg.2305]    [Pg.2315]    [Pg.2342]    [Pg.2450]   


SEARCH



Other Potentials

Other Potentiators

© 2024 chempedia.info