Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium bromide hydride

A dry 5(X)-mI flask equipped with a thermometer, pressure-equalizing dropping funnel, and magnetic stirrer is flushed with nitrogen and then maintained under a static pressure of the gas. The flask is charged with 50 ml of tetrahydrofuran and 13.3 ml (0.15 mole) of cyclopentene, and then is cooled in an ice bath. Conversion to tricyclo-pentylborane is achieved by dropwise addition of 25 ml of a 1 M solution of diborane (0.15 mole of hydride see Chapter 4, Section 1 for preparation) in tetrahydrofuran. The solution is stirred for 1 hour at 25° and again cooled in an ice bath, and 25 ml of dry t-butyl alcohol is added, followed by 5.5 ml (0.05 mole) of ethyl bromoacetate. Potassium t-butoxide in /-butyl alcohol (50 ml of a 1 M solution) is added over a period of 10 minutes. There is an immediate precipitation of potassium bromide. The reaction mixture is filtered from the potassium bromide and distilled. Ethyl cyclopentylacetate, bp 101730 mm, 1.4398, is obtained in about 75% yield. Similarly, the reaction can be applied to a variety of olefins including 2-butene, cyclohexene, and norbornene. [Pg.115]

Fluoride ion is effective in promoting the reduction of aldehydes by organosil-icon hydrides (Eq. 161). The source of fluoride ion is important to the efficiency of reduction. Triethylsilane reduces benzaldehyde to triethylbenzyloxysilane in 36% yield within 10-12 hours in anhydrous acetonitrile solvent at room temperature when tetraethylammonium fluoride (TEAF) is used as the fluoride ion source and in 96% yield when cesium fluoride is used.83 The carbonyl functions of both p-anisaldehyde and cinnamaldehyde are reduced under similar conditions. Potassium bromide or chloride, or tetramethylammonium bromide or chloride are not effective at promoting similar behavior under these reaction conditions.83 Moderate yields of alcohols are obtained by the KF-catalyzed PMHS, (EtO SiH, or Me(EtO)2SiH reduction of aldehydes.80,83,79... [Pg.59]

Ring degradation is also reported to occur in the reactions of N3P3C16 with formamide and thioformamide (230), potassium bromide in the presence of [18-Crown-6 ether (449), dimethylsulfoxide (447), and metal hydrides (262). [Pg.73]

Decompose the test portion by sintering with sodium peroxide and leaching with water and HC1. Transfer the solution to a distillation flask and evaporate a portion of the solution. Reduce arsenic to arsenic(III) by treatment with potassium bromide and hydrazine sulphate. Adjust the acidity and distill AsC13, collecting the distillate in water. Reduce an aliquot portion of the solution with potassium iodide and ascorbic acid, and treat with sodium borohydride to reduce arsenic ions to the volatile hydride, arsine. Rapidly sweep the arsine into a hydrogen—nitrogen (or argon)-entrained... [Pg.238]

It is doubtful, when solution occurs as molecules (e.g. Hg, Brg, Clg, in KBr, KCl), whether the molecules are homogeneously dispersed. The solute is most likely to be dispersed along faults and glide planes in the crystal. The mere introduction of large foreign molecules into a perfect lattice would distort the lattice locally, and create a fault. Hilsch and Pohl(i3), however, pointed out that when KH is formed in KBr the system KH-KBr is a true solution, since the lattice constant of potassium bromide is a linear function of the potassium hydride content. [Pg.111]

A mixture of 3.18 g (10 mmoles) of 17 -hydroxy-2-hydroxymethylene-5a-androstan-3-one, 20 ml dry dimethyl formamide and 0.3 g (13 mmoles) of sodium hydride is stirred for 0.5 hr at room temperature under nitrogen. A total of 1.51 g (12.5 mmoles) of redistilled allyl bromide is added and the mixture is stirred for 1 hr on the steam bath. Aqueous potassium hydroxide (2 g in 5 ml of water) is added and stirring is continued for 1 hr on the steam bath. The reaction mixture is diluted with 50 ml of methylene dichloride followed by careful addition of 300 ml of water. The organic phase is separated and the aqueous phase is again extracted with 50 ml of methylene dichloride. The combined extracts are washed with water, dried over sodium sulfate, filtered and chromatographed on 200 g of silica gel. Elution with pentane-ether (4 1) provides 2a-allyl-17j -hydroxy-5a-androstan-3-one 0.85 g (26%) mp 118-119° [aj 14° (CHCI3), after crystallization from ether-hexane. [Pg.95]

Bromoacetyl bromide Potassium nitrate Sodium hydride... [Pg.665]

Hydrogenation using Raney nickel is carried out under mild conditions and gives cis alkenes from internal alkynes in yields ranging from 50 to 100% [356, 357, 358, 359, 360]. Half hydrogenation of alkynes was also achieved over nickel prepared by reduction of nickel acetate with sodium borohydride (P-2 nickel, nickel boride) [349,361,362] or by reduction with sodium hydride [49], or by reduction of nickel bromide with potassium-graphite [363]. Other catalysts are palladium on charcoal [364], on barium sulfate [365, 366], on... [Pg.43]

Alkyl bromides and especially alkyl iodides are reduced faster than chlorides. Catalytic hydrogenation was accomplished in good yields using Raney nickel in the presence of potassium hydroxide [63] Procedure 5, p. 205). More frequently, bromides and iodides are reduced by hydrides [505] and complex hydrides in good to excellent yields [501, 504]. Most powerful are lithium triethylborohydride and lithium aluminum hydride [506]. Sodium borohydride reacts much more slowly. Since the complex hydrides are believed to react by an S 2 mechanism [505, 511], it is not surprising that secondary bromides and iodides react more slowly than the primary ones [506]. The reagent prepared from trimethoxylithium aluminum deuteride and cuprous iodide... [Pg.63]

D. Tris[(2-peiiluorohexyl)ethyl]tin hydride (Note 7). A 1-L, three-necked flask and a stirring bar are dried in an oven. The fluorous tin bromide (13.8 g, 11.1 mmol) is dissolved in dry ether (275 mL) and transferred to the dried three-necked flask equipped with a thermometer, stirring bar, and an outlet to argon. The solution is cooled to O C. AIM solution of iithium aluminum hydride (LAH) in ether (11.1 mL, 11.1 mmol) is added dropwise over 45 min to the solution. The addition rate is adjusted to maintain a temperature between 0° and 1°C. The reaction mixture is stirred for 6 hr at 0°C. Water (75 mL) is slowly added (initially dropwise) with stirring to the ice-cold mixture. Sodium potassium tartrate (20%) (250 mL) is added and the mixture is transferred to a 1-L separatory funnel. The ethereal layer is separated and the aqueous layer is extracted three times with ether (3 x 100 mL). The combined extracts are dried with magnesium sulfate and vacuum filtered into a 1-L, round-bottomed flask. The solvent is evaporated under reduced pressure. The cmde product is distilled under a reduced pressure of 0.02 mm at 133-140°C to provide 11.3 g (9.69 mmol, 87%) of the pure product as an oil (Notes 8 and 9). [Pg.149]

The synthesis of anastrozole (Scheme 3.3) began with an 8 2 displacement of commercially available 3,5-fc (bromomethyl)toluene (19) using potassium nitrile and a phase-transfer catalyst, tetrabutylammonium bromide (Edwards and Large, 1990). The resulting fcw-nitrile 20 in DMF was then deprotonated with sodium hydride in the presence of excess methyl iodide to give the fc -dimethylated product 21. Subsequently, a Wohl-Ziegler reaction on 21 was carried out using A-bromosuccinamide (NBS), and a catalytic amount of benzoyl peroxide (BPO) as the radical initiator. Finally, an Sn2 displacement of benzyl bromide 22 with sodium triazole in DMF afforded anastrozole (2) as a white solid. [Pg.36]


See other pages where Potassium bromide hydride is mentioned: [Pg.174]    [Pg.26]    [Pg.52]    [Pg.274]    [Pg.330]    [Pg.294]    [Pg.109]    [Pg.90]    [Pg.250]    [Pg.182]    [Pg.187]    [Pg.138]    [Pg.313]    [Pg.145]    [Pg.429]    [Pg.519]    [Pg.28]    [Pg.1477]    [Pg.59]    [Pg.60]    [Pg.522]    [Pg.526]    [Pg.280]    [Pg.89]    [Pg.1187]    [Pg.259]    [Pg.106]    [Pg.106]    [Pg.177]    [Pg.668]    [Pg.250]    [Pg.257]    [Pg.114]    [Pg.899]   
See also in sourсe #XX -- [ Pg.194 , Pg.273 ]




SEARCH



Potassium bromid

Potassium hydride

© 2024 chempedia.info