Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Population-balance equation turbulent

Venneker et al. (2002) used as many as 20 bubble size classes in the bubble size range from 0.25 to some 20 mm. Just like GHOST , their in-house code named DA WN builds upon a liquid-only velocity field obtained with FLUENT, now with an anisotropic Reynolds Stress Model (RSM) for the turbulent momentum transport. To allow for the drastic increase in computational burden associated with using 20 population balance equations, the 3-D FLUENT flow field is averaged azimuthally into a 2-D flow field (Venneker, 1999, used a less elegant simplification )... [Pg.206]

Delichatsios and Probstein (D4-7) have analyzed the processes of drop breakup and coagulation/coalescence in isotropic turbulent dispersions. Models were developed for breakup and coalescence rates based on turbulence theory as discussed in Section III and were formulated in terms of Eq. (107). They applied these results in an attempt to show that the increase of drop sizes with holdup fraction in agitated dispersions cannot be attributed entirely to turbulence dampening caused by the dispersed phase. These conclusions are determined after an approximate analysis of the population balance equation, assuming the size distribution is approximately Gaussian. [Pg.247]

Venneker et al [118] made an off-line simulation of the underlying flow and the local gas fractions and bubble size distributions for turbulent gas dispersions in a stirred vessel. The transport of bubbles throughout the vessel was estimated from a single-phase steady-state flow fleld, whereas literature kernels for coalescence and breakage were adopted to close the population balance equation predicting the gas fractions and bubble size distributions. [Pg.810]

The remaining chapters in this book are organized as follows. Chapter 2 provides a brief introduction to the mesoscale description of polydisperse systems. There, the mathematical definition of a number-density function (NDF) formulated in terms of different choices for the internal coordinates is described, followed by an introduction to population-balance equations (PBE) in their various forms. Chapter 2 concludes with a short discussion on the differences between the moment-transport equations associated with the PBE and those arising due to ensemble averaging in turbulence theory. This difference is very important, and the reader should keep in mind that at the mesoscale level the microscale turbulence appears in the form of correlations for fluid drag, mass transfer, etc., and thus the mesoscale models can have non-turbulent solutions even when the microscale flow is turbulent (i.e. turbulent wakes behind individual particles). Thus, when dealing with turbulence models for mesoscale flows, a separate ensemble-averaging procedure must be applied to the moment-transport equations of the PBE (or to the PBE itself). In this book, we are primarily... [Pg.27]

ZuccA, A., Marchisio, D. L., Barresi, A. A. Fox, R. O. 2006 Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chemical Engineering Science 61, 87-95. [Pg.487]

The population balance in equation 2.86 employs the local instantaneous values of the velocity and concentration. In turbulent flow, there are fluctuations of the particle velocity as well as fluctuations of species and concentrations (Pope, 1979, 1985, 2000). Baldyga and Orciuch (1997, 2001) provide the appropriate generalization of the moment transformation equation 2.93 for the case of homogeneous and non-homogeneous turbulent particle flow by Reynolds averaging... [Pg.56]

These models require information about mean velocity and the turbulence field within the stirred vessels. Computational flow models can be developed to provide such fluid dynamic information required by the reactor models. Although in principle, it is possible to solve the population balance model equations within the CFM framework, a simplified compartment-mixing model may be adequate to simulate an industrial reactor. In this approach, a CFD model is developed to establish the relationship between reactor hardware and the resulting fluid dynamics. This information is used by a relatively simple, compartment-mixing model coupled with a population balance model (Vivaldo-Lima et al., 1998). The approach is shown schematically in Fig. 9.2. Detailed polymerization kinetics can be included. Vivaldo-Lima et a/. (1998) have successfully used such an approach to predict particle size distribution (PSD) of the product polymer. Their two-compartment model was able to capture the bi-modal behavior observed in the experimental PSD data. After adequate validation, such a computational model can be used to optimize reactor configuration and operation to enhance reactor performance. [Pg.249]

Instead of arbitrarily considering two bubble classes, it may be useful to incorporate a coalescence break-up model based on the population balance framework in the CFD model (see for example, Carrica et al., 1999). Such a model will simulate the evolution of bubble size distribution within the column and will be a logical extension of previously discussed models to simulate flow in bubble columns with wide bubble size distribution. Incorporation of coalescence break-up models, however, increases computational requirements by an order of magnitude. For example, a two-fluid model with a single bubble size generally requires solution of ten equations (six momentum, pressure, dispersed phase continuity and two turbulence characteristics). A ten-bubble class model requires solution of 46 (33 momentum, pressure. [Pg.350]

Tomiyama [148] and Tomiyama and Shimada [150] adopted a N + 1)-fluid model for the prediction of 3D unsteady turbulent bubbly flows with non-uniform bubble sizes. Among the N + l)-fluids, one fluid corresponds to the liquid phase and the N fluids to gas bubbles. To demonstrate the potential of the proposed method, unsteady bubble plumes in a water filled vessel were simulated using both (3 + l)-fluid and two-fluid models. The gas bubbles were classified and fixed in three groups only, thus a (3 + 1)- or four-fluid model was used. The dispersions investigated were very dilute thus the bubble coalescence and breakage phenomena were neglected, whereas the inertia terms were retained in the 3 bubble phase momentum equations. No population balance model was then needed, and the phase continuity equations were solved for all phases. It was confirmed that the (3 + l)-fluid model gave better predictions than the two-fluid model for bubble plumes with non-uniform bubble... [Pg.785]

Equation (57) employs the local instantaneous values of velocity and concentration. To describe the effects on the process of turbulent fluctuations of the particle velocity as well as species and particle concentrations, one can use Reynolds-averaged form of the population balance... [Pg.132]

Instead of assigning different shear rates, he employed different breakage rate expressions for the two zones. The problem of coupling population balance models with fluid flow models has received some attention recently and coupled PB-CFD models have been developed for a wide variety of processes such as fluidization [70], gas-liquid reactions in bubble columns [71] and nanoparticle synthesis in flame aerosol reactors [72]. Complete description of aggregation in turbulent environments requires simultaneous solution of basic balance equations for mass, momentum, energy and concentration of species present along with population balances for particles/aggregates of different size classes. [Pg.273]


See other pages where Population-balance equation turbulent is mentioned: [Pg.295]    [Pg.248]    [Pg.259]    [Pg.263]    [Pg.200]    [Pg.201]    [Pg.649]    [Pg.983]    [Pg.262]    [Pg.246]    [Pg.251]    [Pg.784]    [Pg.847]    [Pg.903]    [Pg.908]    [Pg.982]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Balance equation

Population balance

Population balance equation

Population balance turbulent

© 2024 chempedia.info