Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition pathways, polymorphic

At temperatures below the main transition, a basic equilibrium stracture is the subgel (crystalline) Lc phase. Its formation usually requires prolonged low-temperature incubation. In addition to the Lc phase, many intermediate stable, metastable, and transient lamellar gel structures are adopted by different lipid classes—with perpendicular or tilted chains with respect to the bilayer plane, with fully interdigitated, partially interdigitated, or noninterdigitated chains, rippled bilayers with various ripple periods, and so forth. (Fig. 1). Several polymorphic phase transitions between these structures have been reported. Well-known examples of polymorphic transitions are the subtransition (Lc- L ) and the pretransition (Lp/- Fp/) in phosphatidylcholines (33). Recently, a polymorphic transition that included rapid, reversible transformation of the usual gel phase into a metastable, more ordered gel phase with orthorhombic hydrocarbon chain-packing (so-called Y-transition) was reported to represent a common pathway of the bilayer transformation into a subgel (crystalline) Lc phase (62). [Pg.900]

The pathways of polymorphic transitions for cephalexin, chloramphenicol palmitate, and indomethacin have been studied, and the composition of partially transformed samples determined by XRPD.27 The metastable forms of chloramphenicol palmitate were found to transform into the stable phase when found at room temperature, confirming the results of a previous study.28 In contrast, cephalexin became amorphous upon grinding. Indomethacin exhibited the interesting behavior of becoming amorphous when ground at 4°C, but could be transformed into a metastable phase when ground at 30°C. [Pg.44]

Figure 5. Schematic arrangement of the surface of a partly crystallized E-L TM amorphous alloy such as Pd-Zr. A matrix of zirconia consisting of the two polymorphs holds particles of the L transition metal (Pd) which are structured in a skin of solid solution with oxygen (white) and a nucleus of pure metal (black). The arrows indicate transport pathways for activated oxygen either through bulk diffusion or via the top surface. An intimate contact with a large metal-to-oxide interface volume with ill-defined defective crystal structures (shaded area) is essential for the good catalytic performance. The figure is compiled from the experimental data in the literature [26, 27]. Figure 5. Schematic arrangement of the surface of a partly crystallized E-L TM amorphous alloy such as Pd-Zr. A matrix of zirconia consisting of the two polymorphs holds particles of the L transition metal (Pd) which are structured in a skin of solid solution with oxygen (white) and a nucleus of pure metal (black). The arrows indicate transport pathways for activated oxygen either through bulk diffusion or via the top surface. An intimate contact with a large metal-to-oxide interface volume with ill-defined defective crystal structures (shaded area) is essential for the good catalytic performance. The figure is compiled from the experimental data in the literature [26, 27].
As mentioned above, polymorphism may also arise for compounds formed by isomers whose structures are related by low-energy interconversion pathways, e.g. cluster carbonyls with different distributions of bridging and terminal ligands, or substituted metallo-arenes and metallo-cyclopentadienyl complexes [60]. In such cases, the structural isomers correspond to different energetic minima along the interconversion pathway and the cohesion of the respective crystals may stabilize the less thermodynamically stable isomers. Crystals of structural isomers may (or may not) interconvert via a phase transition. [Pg.351]


See other pages where Transition pathways, polymorphic is mentioned: [Pg.132]    [Pg.133]    [Pg.227]    [Pg.132]    [Pg.133]    [Pg.227]    [Pg.145]    [Pg.184]    [Pg.199]    [Pg.110]    [Pg.348]    [Pg.454]    [Pg.258]    [Pg.45]    [Pg.345]    [Pg.346]    [Pg.165]    [Pg.70]    [Pg.331]    [Pg.328]    [Pg.163]    [Pg.49]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Polymorphic transition

Polymorphism polymorphic transitions

© 2024 chempedia.info