Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers thermal expansion coefficients

Type Polymer Thermal Expansion Coefficient ASTM D696 ( F-l)... [Pg.530]

The Rheometric Scientific RDA II dynamic analy2er is designed for characteri2ation of polymer melts and soHds in the form of rectangular bars. It makes computer-controUed measurements of dynamic shear viscosity, elastic modulus, loss modulus, tan 5, and linear thermal expansion coefficient over a temperature range of ambient to 600°C (—150°C optional) at frequencies 10 -500 rad/s. It is particularly useful for the characteri2ation of materials that experience considerable changes in properties because of thermal transitions or chemical reactions. [Pg.201]

As a consequence, the overall penetrant uptake cannot be used to get direct informations on the degree of plasticization, due to the multiplicity of the polymer-diluent interactions. The same amount of sorbed water may differently depress the glass transition temperature of systems having different thermal expansion coefficients, hydrogen bond capacity or characterized by a nodular structure that can be easily crazed in presence of sorbed water. The sorption modes, the models used to describe them and the mechanisms of plasticization are presented in the following discussion. [Pg.191]

Network properties and microscopic structures of various epoxy resins cross-linked by phenolic novolacs were investigated by Suzuki et al.97 Positron annihilation spectroscopy (PAS) was utilized to characterize intermolecular spacing of networks and the results were compared to bulk polymer properties. The lifetimes (t3) and intensities (/3) of the active species (positronium ions) correspond to volume and number of holes which constitute the free volume in the network. Networks cured with flexible epoxies had more holes throughout the temperature range, and the space increased with temperature increases. Glass transition temperatures and thermal expansion coefficients (a) were calculated from plots of t3 versus temperature. The Tgs and thermal expansion coefficients obtained from PAS were lower titan those obtained from thermomechanical analysis. These differences were attributed to micro-Brownian motions determined by PAS versus macroscopic polymer properties determined by thermomechanical analysis. [Pg.416]

The thermal expansion, however, changes behavior at the glass transition, which is a phenomenon that was first analyzed in detail in a careful study by Kovacs.4 In the polymer melt, the thermal expansion coefficient is almost constant, and it is again so in the glass but with a smaller value. At the glass transition, there is therefore a break in the dependence of density on temperature that is the foremost thermophysical characteristic of the glass transition. [Pg.3]

A study of the PVT properties of hyperbranched aliphatic polyesters by Hult et al. [ 117] showed that these polyesters were dense structures with smaller thermal expansion coefficients and lower compressibility compared to some linear polymers. [Pg.22]

The effect of blending LDPE with EVA or a styrene-isoprene block copolymer was investigated (178). The properties (thermal expansion coefficient. Young s modulus, thermal conductivity) of the foamed blends usually lie between the limits of the foamed constituents, although the relationship between property and blend content is not always linear. The reasons must he in the microstructure most polymer pairs are immiscible, but some such as PS/polyphenylene oxide (PPO) are miscible. Eor the immiscible blends, the majority phase tends to be continuous, but the form of the minor phase can vary. Blends of EVA and metallocene catalysed ethylene-octene copolymer have different morphologies depending on the EVA content (5). With 25% EVA, the EVA phase appears as fine spherical inclusions in the LDPE matrix. The results of these experiments on polymer films will apply to foams made from the same polymers. [Pg.4]


See other pages where Polymers thermal expansion coefficients is mentioned: [Pg.74]    [Pg.4]    [Pg.391]    [Pg.74]    [Pg.4]    [Pg.391]    [Pg.498]    [Pg.9]    [Pg.199]    [Pg.266]    [Pg.664]    [Pg.231]    [Pg.56]    [Pg.141]    [Pg.289]    [Pg.17]    [Pg.17]    [Pg.274]    [Pg.325]    [Pg.4]    [Pg.55]    [Pg.665]    [Pg.258]    [Pg.92]    [Pg.154]    [Pg.63]    [Pg.64]    [Pg.107]    [Pg.505]   
See also in sourсe #XX -- [ Pg.72 , Pg.257 ]




SEARCH



Polymer expansion

Thermal coefficient

Thermal expansion coefficients

Thermal expansion polymers

Thermall expansion coefficient

© 2024 chempedia.info