Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer-diluent mixtures crystallization rate

There are several methods by which the kinetics of crystallization of polymers from the pure melt, or from polymer-diluent mixtures, can be investigated. One procedure is to study the overall rate of crystallization using methods such as dilatometry, calorimetry, and various spectroscopies, for example. Another popular method by which to study the process of crystallization is to measure the rate of growth of sphemlites by direct hght microscopic examination. These two methods complement one another. Measurements of the rates of growth of specific crystal faces have also been employed in favorable cases for studying the kinetics of crystallization from dilute solution. [Pg.245]

An analysis of the overall crystallization rate with composition requires that the comparison be made either at constant undercooling or at one of the nucleation temperature quantities, T / T AT or T /T(AT). This requirement is essential because of the importance of nucleation to the crystallization process. The overall crystallization kinetics of a variety of polymer-diluent systems have been reported. Many different relations between the overall crystallization rate and composition have been observed. For example, as is shown in Fig. 13.17 there is a continuous decrease in the crystallization rate with dilution for linear polyethylene-a-chloronaphthalene mixtures.(42) The results for poly(trans-1,4-isoprene) in methyl oleate follow a similar pattem.(80) In contrast, the rates for poly(dimethyl siloxane) crystallizing from toluene, at compositions V2 = 0.32 to 0.79, are the same at all undercoolings, but are faster than that of the pure polymer.(78) Another example is found with poly(ethylene oxide)-diphenyl ether mixtures.(77) In this case the crystallization rates for the pure polymer and composition = 0.92 to 0.51 are the same. However, the rates for the more dilute mixtures, V2 = 0.04 and 0.30 are lower. For poly(decamethylene adipate)-dimethyl formamide mixture the rates for the pure polymer and V2 = 0.80 are the same.(77) The mixture of isotactic poly(propylene) with dotricontane shows interesting behavior.(81) At all undercoolings studied, the crystallization rate initially decreases with dilution, reaches a minimum in the range V2 — 0.7 (a maximum in ti/2) and then slowly increases with further dilution, up to V2 = 0.10. [Pg.418]

Polymers that show a rate maximum with respect to temperature in the pure state do so also when crystallizing from diluent mixtures.(42a,67,88) Two examples are shown in Figs. 13.32 and 13.33 for isotactic poly(styrene) crystallizing from ether benzophenone or dimethyl phthalate respectively.(42a,67) Characteristically, the addition of the diluent causes a shift of the crystallization range to lower temperatures. A similar effect was observed with bisphenol-A poly(carbonate).(88) In addition, the growth rate maximum increases with the initial addition of diluent. This phenomenon is observed up to about 20% diluent in the case of benzophenone (Fig. 13.32) and about 50% with dimethyl phthalate (Fig. 13.33). A similar pattern is also indicated for the poly(carbonate)-diluent mixture.(89) With further additions of diluent there is a continuous decrease in the growth maxima up to very dilute... [Pg.421]


See other pages where Polymer-diluent mixtures crystallization rate is mentioned: [Pg.114]    [Pg.401]    [Pg.399]    [Pg.417]    [Pg.268]    [Pg.226]    [Pg.458]   
See also in sourсe #XX -- [ Pg.388 , Pg.389 ]




SEARCH



Crystal rates

Crystallization rates

Diluents

Polymer-diluent mixtures

© 2024 chempedia.info