Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycyclic systems protocols

In this section, those reactions in which the ylide is attached by a tether to the dipolaraphile resulting in an intramolecular cycloaddition will be discussed. To date, such a strategy has proved to be one of the less investigated aspects of azomethine ylide chemistry. However, intramolecular azomethine ylide technology, when combined with the excellent stereocontrol offered by cycloaddition reactions, allows for the rapid construction of complex polycyclic systems from relatively simple precursors. Consequently, it represents a highly attractive synthetic protocol that makes it a candidate for further investigation in the coming years. [Pg.219]

In an extensive study into the application of the decarboxylative approach to azomethine ylides, Giigg reported the construction of numerous, complex polycyclic systems via an intramolecular protocol. Thiazolidine-4-carboxylic acid (263) was shown to react with 264 in refluxing toluene to furnish a 2 1 mixture of 265 and 266 in 63% yield (81). The reaction is assumed to occur via condensation of the aldehyde and amino acid to generate the imine 267, followed by cyclization to 268. Subsequent thermal decarboxylation of the ester generates either a syn dipole leading to 265 from an exo transition state, or an anti dipole and endo transition state generating adduct 266 (Scheme 3.90). [Pg.228]

Some simple biphenols equipped with methyl groups, e.g., 3,3, 5,5 -tetramethyl-2,2 -biphenol 38, have attracted attention as important components of highly potent ligand systems [75-86]. Remarkably, the sustainable synthesis of such biphenols is rather challenging despite their simple scaffolds. In particular, methyl-substituted phenols are prone to side reactions. This is especially the case when 2,4-dimethyl-phenol (37) is oxidatively treated. Upon anodic conversion 37 is preferably transformed into polycyclic architectures [87]. Direct electrolysis in basic media provided only traces of the desired biphenol 38 and the dominating components of the product mixture consisted of Pu in meter s ketone 39 and the consecutive pentacyclic spiro derivative 40 [88]. For an efficient electrochemical access to 3,3, 5,5 -tetramethyl-2,2,-biphenol (38) we developed a boron-based template strategy [89, 90]. This methods requires a multi-step protocol but can be conducted on a multi-kilogram scale (Scheme 17). [Pg.17]


See other pages where Polycyclic systems protocols is mentioned: [Pg.248]    [Pg.11]    [Pg.255]    [Pg.594]    [Pg.25]    [Pg.177]    [Pg.81]    [Pg.129]    [Pg.8]   
See also in sourсe #XX -- [ Pg.228 , Pg.229 , Pg.230 , Pg.231 , Pg.232 , Pg.233 , Pg.234 , Pg.235 , Pg.236 ]

See also in sourсe #XX -- [ Pg.228 , Pg.229 , Pg.230 , Pg.231 , Pg.232 , Pg.233 , Pg.234 , Pg.235 , Pg.236 ]




SEARCH



Polycyclic systems

© 2024 chempedia.info