Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly maximum overall crystallization

Two typical examples of the overall crystallization rate, expressed as either fo s or peak time, are given in Fig. 11.7 for poly(ethylene oxide)-poly(vinyl phenol) (18) and for poly(aryl ether ether ketone)-poly(ether imide) (19) in Fig. 11.8. The dependence of the crystallization rates on composition are similar to one another and are closely related to the results for other binary mixtures. The overall crystallization rates follow the pattern established for spherulite growth rates. At the higher crystallization temperatures only a modest decrease in the rate is observed with the addition of the noncrystallizing component However, with a decrease in the crystallization temperature the polymeric diluent becomes more effective in reducing the rate. Because of the retardation in the rate with dilution a much wider range in isothermal crystallization temperatures can be studied. Thus, for the more dilute blends a maximum in the rates with temperature can be observed. This is... [Pg.289]

An analysis of the overall crystallization rate with composition requires that the comparison be made either at constant undercooling or at one of the nucleation temperature quantities, T / T AT or T /T(AT). This requirement is essential because of the importance of nucleation to the crystallization process. The overall crystallization kinetics of a variety of polymer-diluent systems have been reported. Many different relations between the overall crystallization rate and composition have been observed. For example, as is shown in Fig. 13.17 there is a continuous decrease in the crystallization rate with dilution for linear polyethylene-a-chloronaphthalene mixtures.(42) The results for poly(trans-1,4-isoprene) in methyl oleate follow a similar pattem.(80) In contrast, the rates for poly(dimethyl siloxane) crystallizing from toluene, at compositions V2 = 0.32 to 0.79, are the same at all undercoolings, but are faster than that of the pure polymer.(78) Another example is found with poly(ethylene oxide)-diphenyl ether mixtures.(77) In this case the crystallization rates for the pure polymer and composition = 0.92 to 0.51 are the same. However, the rates for the more dilute mixtures, V2 = 0.04 and 0.30 are lower. For poly(decamethylene adipate)-dimethyl formamide mixture the rates for the pure polymer and V2 = 0.80 are the same.(77) The mixture of isotactic poly(propylene) with dotricontane shows interesting behavior.(81) At all undercoolings studied, the crystallization rate initially decreases with dilution, reaches a minimum in the range V2 — 0.7 (a maximum in ti/2) and then slowly increases with further dilution, up to V2 = 0.10. [Pg.418]


See other pages where Poly maximum overall crystallization is mentioned: [Pg.254]    [Pg.205]    [Pg.57]    [Pg.193]    [Pg.227]    [Pg.259]    [Pg.291]    [Pg.305]    [Pg.308]    [Pg.309]    [Pg.310]    [Pg.361]    [Pg.414]    [Pg.515]    [Pg.183]    [Pg.4761]    [Pg.231]    [Pg.66]   


SEARCH



Poly , crystal

Poly , crystallization

Poly(2,2 -/u .s -4,4 -oxyphenyl propane maximum overall crystallization

© 2024 chempedia.info