Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarizability coupled-clusters

Solvatochromic shifts for cytosine have also been calculated with a variety of methods (see Table 11-7). Shukla and Lesczynski [215] studied clusters of cytosine and three water molecules with CIS and TDDFT methods to obtain solvatochromic shifts. More sophisticated calculations have appeared recently. Valiev and Kowalski used a coupled cluster and classical molecular dynamics approach to calculate the solvatochromic shifts of the excited states of cytosine in the native DNA environment. Blancafort and coworkers [216] used a CASPT2 approach combined with the conductor version of the polarizable continuous (CPCM) model. All of these methods predict that the first three excited states are blue-shifted. S i, which is a nn state, is blue-shifted by 0.1-0.2 eV in water and 0.25 eV in native DNA. S2 and S3 are both rnt states and, as expected, the shift is bigger, 0.4-0.6eV for S2 and 0.3-0.8 eV for S3. S2 is predicted to be blue-shifted by 0.54 eV in native DNA. [Pg.321]

The last method used in this study is CCSD linear response theory [37]. The frequency-dependent polarizabilities are again identified from the time evolution of the corresponding moments. However, in CCSD response theory the moments are calculated as transition expectation values between the coupled cluster state l cc(O) and a dual state... [Pg.190]

Very accurate values of the dipole and quadrupole polarizability for the equilibrium internuclear distance of HF can be found in a review article by Maroulis [71], calculated with finite-field Mpller-Plesset perturbation theory at various orders and coupled cluster theory using a carefully selected basis set. [Pg.201]

On the other hand, there are several clear perspectives for future improvements and extensions of COSMO-RS. One of the most obvious perspectives is the improvement of the underlying quantum chemical methods. While density functional theory appears to have reached its limit regarding the quality of the electrostatics, and hence of the COSMO polarization charge densities, there will be an increase in the availability of higher correlated ab initio methods like coupled cluster calculations at affordable computational cost. Quantum chemical calculation of local polarizability and eventually of suitable descriptors for dispersion forces should provide additional information about the strength of local surface interactions and can be used to improve the various surface interaction functionals. At the other end, the quantum chemical COSMO calculations for larger biomolecules and enzymes, which have just become available at reasonable... [Pg.217]

RJ. Wheatley, Time-dependent coupled-cluster calculations of polarizabilities and dispersion energy coefficients. J. Comput. Chem. 29, 445 150 (2008)... [Pg.336]

Korona T, Przybytek M, Jeziorski B. Time-independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and Van der Waals constants, 2006. Submitted to Mol. Phys 104 2302-2316... [Pg.138]

Molecular polarizabilities and hyperpolarizabilities are now routinely calculated in many computational packages and reported in publications that are not primarily concerned with these properties. Very often the calculated values are not likely to be of quantitative accuracy when compared with experimental data. One difficulty is that, except in the case of very small molecules, gas phase data is unobtainable and some allowance has to be made for the effect of the molecular environment in a condensed phase. Another is that the accurate determination of the nonlinear response functions requires that electron correlation should be treated accurately and this is not easy to achieve for the molecules that are of greatest interest. Very often the higher-level calculation is confined to zero frequency and the results scaled by using a less complete theory for the frequency dependence. Typically, ab initio studies use coupled-cluster methods for the static values scaled to frequencies where the effects are observable with time-dependent Hartree-Fock theory. Density functional methods require the introduction of specialized functions before they can cope with the hyperpolarizabilities and higher order magnetic effects. [Pg.69]

Thakkar and Lupinetti5 have used the coupled-cluster method in conjunction with the Douglas-Kroll relativistic Hamiltonian to obtain a very accurate value for the static dipole polarizability of the sodium atom. Their revised value for a(Na) = 162.88 0.6 au resolves a previous discrepancy between theory and experiment and when combined with an essentially exact value for lithium, establishes the ratio a(Li)/a(Na) = 1.0071 0.0037, so that, because of the... [Pg.70]

Working to similar levels of accuracy, Pawlowski et al have calculated the static and frequency-dependent linear polarizability and second hyperpolarizability of the Ne atom using coupled-cluster methods with first order relativistic corrections. Good agreement with recent experimental results is achieved. Klopper et al.s have applied an implementation of the Dalton code that enables... [Pg.71]

Electron correlation plays a role in electrical response properties and where nondynamical correlation is important for the potential surface, it is likely to be important for electrical properties. It is also the case that correlation tends to be more important for higher-order derivatives. However, a deficient basis can exaggerate the correlation effect. For small, fight molecules that are covalently bonded and near their equilibrium structure, correlation tends to have an effect of 1 5% on the first derivative properties (electrical moments) [92] and around 5 15% on the second derivative properties (polarizabilities) [93 99]. A still greater correlation effect is possible, if not typical, for third derivative properties (hyperpolarizabilities). Ionic bonding can exhibit a sizable correlation effect on hyperpolarizabilities. For instance, the dipole hyperpolarizability p of LiH at equilibrium is about half its size with the neglect of correlation effects [100]. For the many cases in which dynamical correlation is not significant, the nondynamical correlation effect on properties is fairly well determined with MP2. For example, in five small covalent molecules chosen as a test set, the mean deviation of a elements obtained with MP2 from those obtained with a coupled cluster level of treatment was 2% [101]. [Pg.17]

Table 8. The static dipole polarizability for the ground state and the first excited singlet state of pyrimidine in a.u. Coupled cluster values from [121]. The polarizability anisotropy parameter is defined as y = + a )/2 — Reproduced from [58]... Table 8. The static dipole polarizability for the ground state and the first excited singlet state of pyrimidine in a.u. Coupled cluster values from [121]. The polarizability anisotropy parameter is defined as y = + a )/2 — Reproduced from [58]...

See other pages where Polarizability coupled-clusters is mentioned: [Pg.149]    [Pg.150]    [Pg.193]    [Pg.213]    [Pg.227]    [Pg.230]    [Pg.12]    [Pg.185]    [Pg.187]    [Pg.187]    [Pg.190]    [Pg.168]    [Pg.212]    [Pg.336]    [Pg.168]    [Pg.170]    [Pg.57]    [Pg.376]    [Pg.14]    [Pg.15]    [Pg.17]    [Pg.27]    [Pg.1152]    [Pg.1176]    [Pg.120]    [Pg.72]    [Pg.73]    [Pg.87]    [Pg.99]    [Pg.102]    [Pg.207]    [Pg.17]    [Pg.114]    [Pg.22]    [Pg.258]    [Pg.187]    [Pg.67]    [Pg.1207]    [Pg.4]   
See also in sourсe #XX -- [ Pg.133 , Pg.1212 ]




SEARCH



Cluster coupled

© 2024 chempedia.info