Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar addition carbon

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

The initial step of olefin formation is a nucleophilic addition of the negatively polarized ylide carbon center (see the resonance structure 1 above) to the carbonyl carbon center of an aldehyde or ketone. A betain 8 is thus formed, which can cyclize to give the oxaphosphetane 9 as an intermediate. The latter decomposes to yield a trisubstituted phosphine oxide 4—e.g. triphenylphosphine oxide (with R = Ph) and an alkene 3. The driving force for that reaction is the formation of the strong double bond between phosphorus and oxygen ... [Pg.294]

We ll defer a detailed discussion of the mechanisms of these reductions until Chapter 19. For the moment, we ll simply note that they involve the addition of a nucleophilic hydride ion ( H ) to the positively polarized, electrophilic carbon atom of the carbonyl group. The initial product is an afkoxide ion, which is protonated by addition of H 0+ in a second step to yield the alcohol product. [Pg.610]

Majeti11 has studied the photochemistry of simple /I-ketosulfoxides, PhCOCH2SOCH3, and found cleavage of the sulfur-carbon bond, especially in polar solvents, and the Norrish Type II process to be the predominant pathways, leading to both 1,2-dibenzoylethane and methyl methanethiolsulfonate by radical dimerization, as well as acetophenone (equation 3). Nozaki and coworkers12 independently revealed similar results and reported in addition a pH-dependent distribution of products. Miyamoto and Nozaki13 have shown the incorporation of protic solvents into methyl styryl sulfoxide, by a polar addition mechanism. [Pg.874]

Specific separation effects can be understood from the multicomponent solubility parameter theory. Specific effects for nonpolar compounds are predictable with perfluorinated and graphitized carbon black stationary phases. Specific selectivity for polar compounds in reversed-phase HPLC can be realized with polar additives to the mobile phase. [Pg.541]

This enhanced reactivity of fluoromethyl cyanide is undoubtedly due to the inductive effect of the fluorine atom which produces an electron deficit on the carbon atom linked to the nitrogen, and presumably increases still further the polarity of the carbon-nitrogen bond, so that the electron displacements can be pictured as (IX). The increased polarity of the carbon-nitrogen bond will obviously facilitate polar addition of hydrogen chloride and alcohols (or phenols). [Pg.141]

Later on, product distribution studies15 of the ionic addition of chlorine to conjugated dienes, and in particular to cyclopentadiene, 1,3-cyclohexadiene, cis,cis-, trans,trans-and c ,fraws-2,4-hexadienes, and cis- and trans-1,3-pentadienes have supplied the first stereochemical data, showing that the stereochemistry of 1,4-addition is predominantly syn, although to an extent smaller than that of bromine addition. Moreover, the 1,2-addition is generally non stereoselective, except for the addition to the 3,4-bond of cis-and trans-1,3-pentadienes where the attack is 89-95% anti. Finally, appreciable amounts of cis- 1,2-dichlorides were obtained from the two cyclic dienes, whereas 2,4-hexadienes showed a preference for anti 1,2-addition, at least in the less polar solvents (carbon tetrachloride and pentane). On the basis of all these results the mechanism shown in equation 29 was proposed. [Pg.565]

A further study of the aggregation state of PhLi in etheral solvents has resolved signals for the ipso carbon which firmly establish the tetramer and dimer structures in diethylether, and the dimer and monomer structures in THF. The effects of polar additives such as THF, DME, dioxolane, 2,5-dimethyltetrahydrofuran, TMEDA, PMDTA, HMTTA, HMPA, DMPU, and 12-crown-6 to solutions of PhLi in diethylether and/or THE have been studied by low-temperature multinuclear techniques. [Pg.354]

The nitrone 127 (96% ee) containing an additional carbon atom was synthesized in a similar manner as 124. However, for nitrone 127, no spontaneous cyclization took place (Scheme 12.43). Upon heating of 127 in toluene, an inseparable mixmre of product isomers was formed. It was also found that in the presence of a stoichiometric amount of ZnCl2, the reaction proceeded to give the bicyclo[4.2.1] product 128 as the only observed product with close to complete retention of enantiopurity (ee=94%). The authors propose a more polarized transition state of the Zn-mediated reaction with a well-developed positive charge on one of the carbon atoms of the alkene moiety to account for the inverted direction of the regioselectivity of the reaction (230). A subsequent reduction gave the functionalized cycloheptane 129. [Pg.847]

Tertiary systems. With methanol/carbon dioxide mixtures the addition of even the most polar additives has only a small impact on the mobile phase solvent strength as measured with Nile Red. With TFA concentrations below 1 to 2 % in methanol, ternary mixtures of TFA/methanol/carbon dioxide produce the same apparent solvent strength as binary methanol/carbon dioxide mixtures. As much as 5 or 10 % TFA in methanol is required to noticeably increase the solvent strength of TFA/methanol/carbon dioxide mixtures above those for binary methanol/carbon dioxide mixtures, as shown in Figure 4. [Pg.138]

The use of a catalytic amount of iodine in acetone was found to effect the addition of isopropylidene cyclic acetals to a wide variety of mono-199 and disaccharides.200 In the case of disaccharides, some cleavage of the glycosidic link was also observed. The proposed rationale for this acetalation is that iodine, acting as a Lewis acid, polarizes the carbon-oxygen bond (Scheme 42), increasing the electrophilicity of the carbon, leading to dehydration. In this instance, the iodine acts in the same manner as a proton in the acid-catalyzed introduction of a cyclic acetal. Hydroiodic... [Pg.44]

Haloamines and other precursors to aziridines can be generated by various polar additions . Three important groups of polar processes leading to aziridines are shown in Scheme 22. In the aza-Darzens route , the imine acts as an electrophile at carbon and later as a nucleophile at nitrogen, while the -haloenolate acts initially as a nucleophile at carbon and later as an electrophile at the same carbon. The roles of the two components are reversed for the polar aziridination route, which is related to the epoxidation reaction. In the -haloenone route, the 1,2-dihalide or -haloenone acts formally as a bis-electrophile while the amine acts as a bis-nucleophile. [Pg.660]

J. Hinc, Phys. Org. Chem., Ch. 9, Polar Addition to Carbon-Carbon Multiple Bonds. C. K. Ingold, Struct, and Mech., Ch. XIII, Additions and Their Retrogression. ... [Pg.1188]


See other pages where Polar addition carbon is mentioned: [Pg.171]    [Pg.85]    [Pg.157]    [Pg.13]    [Pg.348]    [Pg.119]    [Pg.139]    [Pg.35]    [Pg.241]    [Pg.394]    [Pg.88]    [Pg.486]    [Pg.115]    [Pg.25]    [Pg.155]    [Pg.327]    [Pg.142]    [Pg.74]    [Pg.666]    [Pg.102]    [Pg.231]    [Pg.3216]    [Pg.137]    [Pg.510]    [Pg.686]    [Pg.142]    [Pg.668]    [Pg.688]    [Pg.520]   


SEARCH



Additives carbon

Carbon addition

Polar addition

Polar additives

© 2024 chempedia.info