Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum complexes oxidative addition

Fig. 8.3 Warren R. Roper (born in 1938) studied chemistry at the University of Canterbury in Christchurch, New Zealand, and completed his Ph.D. in 1963 under the supervision of Cuthbert J. Wilkins. He then undertook postdoctoral research with James P. Collman at the University of North Carolina at Chapel Hill in the US, and returned to New Zealand as Lecturer in Chemistry at the University of Auckland in 1966. In 1984, he was appointed Professor of Chemistry at the University of Auckland and became Research Professor of Chemistry at the same institution in 1999. His research interests are widespread with the emphasis on synthetic and structural inorganic and organometallic chemistry. Special topics have been low oxidation state platinum group metal complexes, oxidative addition reactions, migratory insertion reactions, metal-carbon multiple bonds, metallabenzenoids and more recently compounds with bonds between platinum group metals and the main group elements boron, silicon, and tin. His achievements were recognized by the Royal Society of Chemistry through the Organometallic Chemistry Award and the Centenary Lectureship. He was elected a Fellow of the Royal Society of New Zealand and of the Royal Society London, and was awarded the degree Doctor of Science (honoris causa) by the University of Canterbury in 1999 (photo by courtesy from W. R. R.)... Fig. 8.3 Warren R. Roper (born in 1938) studied chemistry at the University of Canterbury in Christchurch, New Zealand, and completed his Ph.D. in 1963 under the supervision of Cuthbert J. Wilkins. He then undertook postdoctoral research with James P. Collman at the University of North Carolina at Chapel Hill in the US, and returned to New Zealand as Lecturer in Chemistry at the University of Auckland in 1966. In 1984, he was appointed Professor of Chemistry at the University of Auckland and became Research Professor of Chemistry at the same institution in 1999. His research interests are widespread with the emphasis on synthetic and structural inorganic and organometallic chemistry. Special topics have been low oxidation state platinum group metal complexes, oxidative addition reactions, migratory insertion reactions, metal-carbon multiple bonds, metallabenzenoids and more recently compounds with bonds between platinum group metals and the main group elements boron, silicon, and tin. His achievements were recognized by the Royal Society of Chemistry through the Organometallic Chemistry Award and the Centenary Lectureship. He was elected a Fellow of the Royal Society of New Zealand and of the Royal Society London, and was awarded the degree Doctor of Science (honoris causa) by the University of Canterbury in 1999 (photo by courtesy from W. R. R.)...
Oxidative addition of transition metal-hydride and transition metal-carhon bonds to zero-valent transition metal complexes provides convenient method for preparation of homo- and heterodinuclear organometallic complexes. Oxidative addition of iron-hydride to zero-valent platinum complex giving Fe-Pt heterodinuclear complexes was demonstrated hy the reaction of HFe[Si(OMe)3](CO)3(/c -dppe) with zero-valent platinum complex such as Pt(C2H4)3 or Pt( 1,5-cod)2 giving eventually heterodinuclear ethyl or cyclooctenyl complex (Scheme 3.86) [175]. The resulting heterodinuclear structure is stahihzed hy the bridging dppe ligand and the siloxo moiety. [Pg.173]

Differences are also observed in the reactivity of platinum(II) complexes of [82X2] and [802X2] towards halogens. In the former case oxidative addition to give platinum(IV) complexes occurs, with retention... [Pg.128]

Oxidative addition reactions of platinum(II) complexes with N-heterocyclic ligands 97CRV1735. [Pg.221]

Figure 3.106 Synthesis of a platinum(IV) complex by frans-oxidative addition of a platinum(II)... Figure 3.106 Synthesis of a platinum(IV) complex by frans-oxidative addition of a platinum(II)...
The use of this phosphine facilitates assignment of configuration as virtual coupling is observed when the phosphines are trans (section 2.9.5).) Syntheses follow established routes using methyllithium as an alkylating agent the platinum(iV) complexes can be made by direct alkylation of platinum(IV) compounds or by oxidative addition to platinum(II) species. [Pg.264]

Substantially more work has been done on reactions of square-planar nickel, palladium, and platinum alkyl and aryl complexes with isocyanides. A communication by Otsuka et al. (108) described the initial work in this area. These workers carried out oxidative addition reactions with Ni(CNBu )4 and with [Pd(CNBu )2] (. In a reaction of the latter compound with methyl iodide the complex, Pd(CNBu )2(CH3)I, stable as a solid but unstable in solution, was obtained. This complex when dissolved in toluene proceeds through an intermediate believed to be dimeric, which then reacts with an additional ligand L (CNBu or PPh3) to give PdL(CNBu )- C(CH3)=NBu I [Eq. (7)]. [Pg.31]

It is probable that during hydrosilylations these Ni(II) complexes are reduced to 7r-olefin Ni(0) species which then undergo an oxidative addition in an identical manner to that already discussed for the chloroplatinic acid case. There is current interest in such oxidations (83), and the platinum analog (Ph3P)2Pt(olefin) has been shown in one case (olefin = C2H4) to be an excellent hydrosilylation catalyst (240). In this system, intermediate low oxidation state Pt species have been isolated their nature is dependent on the electronegativity of the other groups attached to silicon. [Pg.310]

In 1979, the first isolation of the hydrido(hydroxo) complex by oxidative addition of water to an electron-rich platinum(O) complex was accomplished by Yoshida and Otsuka [22]. Highly coordinatively unsaturated bis(triisopropylphosphine)platinum (24b) can activate water very easily at room temperature to give the hydrido(hydroxo)... [Pg.175]

Hydrido(hydroxo) complexes derived from the oxidative addition of HjO to [Pt(PR3)3] (26) are stronger bases than aqueous alkali in organic media. Platinum(O)... [Pg.209]

The discussion of the activation of bonds containing a group 15 element is continued in chapter five. D.K. Wicht and D.S. Glueck discuss the addition of phosphines, R2P-H, phosphites, (R0)2P(=0)H, and phosphine oxides R2P(=0)H to unsaturated substrates. Although the addition of P-H bonds can be sometimes achieved directly, the transition metal-catalyzed reaction is usually faster and may proceed with a different stereochemistry. As in hydrosilylations, palladium and platinum complexes are frequently employed as catalyst precursors for P-H additions to unsaturated hydrocarbons, but (chiral) lanthanide complexes were used with great success for the (enantioselective) addition to heteropolar double bond systems, such as aldehydes and imines whereby pharmaceutically valuable a-hydroxy or a-amino phosphonates were obtained efficiently. [Pg.289]

Two main mechanisms may be proposed for the first step of the alkane interaction with platinum(II) complexes (1) oxidative addition... [Pg.35]

The chemistry of platinum(0) is overwhelmingly dominated by phosphine complexes with the general formula [Pt(PR3) ] (n = 2-4). These complexes undergo various types of oxidative addition reactions, activating a wide variety of bonds. The stability of the complexes depends on the steric... [Pg.674]

Platinum(O) phosphine complexes undergo a variety of oxidative addition reactions with compounds containing Group 14 elements. These reactions are of widespread interest because similar processes are probably involved in the catalysis by platinum complexes of reactions such as the hydrosilation of alkenes and the disilylation of dienes and alkenes. [Pg.678]

The trimeric platinum(O) complex [Pt3(CNBu )6] undergoes a double oxidative addition reaction with 2,2-bis(disilanyl)dithiane to give tetrakis(organosilyl)bis(/-butylisocyanide)platinum(IV) complexes.53 The Si—Ge bonds in bis(silylgermyl)dithiane are also cleaved by [Pt3(CNBu )6] giving analogous platinum(IV) complexes with Pt—Si and Pt—Ge bonds.53... [Pg.678]

Mono- and bis(silyl)platinum(II) complexes are believed to play important catalytic roles in hydrosilylation, dehydrocoupling, and double silylation reactions with disilanes and hydrosilanes. A stable, mono(silyl)platinum(II) complex has been prepared by the oxidative addition reaction of the sterically hindered, primary arylsilane 2,6-Mes2C6H3SiH3 (Mes = 2,4,6-trimethylbenzene) to the platinum(O) species [Pt(PPr3)3] in hexane solution at room temperature.133 The colorless product m-[PLl 1(2,6-Mes2C6II3(11 )2Si)(PPr3)2] (21) was isolated as the OPPr3 adduct, and its... [Pg.689]


See other pages where Platinum complexes oxidative addition is mentioned: [Pg.180]    [Pg.538]    [Pg.350]    [Pg.315]    [Pg.271]    [Pg.162]    [Pg.490]    [Pg.591]    [Pg.421]    [Pg.357]    [Pg.300]    [Pg.180]    [Pg.115]    [Pg.135]    [Pg.222]    [Pg.191]    [Pg.216]    [Pg.76]    [Pg.261]    [Pg.301]    [Pg.24]    [Pg.74]    [Pg.177]    [Pg.181]    [Pg.186]    [Pg.36]    [Pg.584]    [Pg.673]    [Pg.677]    [Pg.678]    [Pg.678]    [Pg.678]    [Pg.679]    [Pg.679]    [Pg.681]   
See also in sourсe #XX -- [ Pg.388 ]

See also in sourсe #XX -- [ Pg.261 , Pg.262 ]

See also in sourсe #XX -- [ Pg.5 , Pg.388 ]




SEARCH



Complexing additives

Oxidation platinum

Oxidative addition complexes

Oxidative addition platinum hydride complexes

Oxidative addition reactions platinum hydride complexes

Platinum oxide

© 2024 chempedia.info