Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral piperidine

Fig. 1. Conformational representation of the piperidine ring of morphine (1) and analogues meperidine (7, R = H, R = COOC2H ) and alphaprodine (7, R = R = 0CC2H ). The chiral center of interest in stmcture (7) is starred (see text). Fig. 1. Conformational representation of the piperidine ring of morphine (1) and analogues meperidine (7, R = H, R = COOC2H ) and alphaprodine (7, R = R = 0CC2H ). The chiral center of interest in stmcture (7) is starred (see text).
Marazano and co-workers have used the Zincke reaction extensively to prepare chiral templates for elaboration to substituted piperidine and tetrahydropyridine natural products and medicinal agents. For example, 3-picoline was converted to Zincke salt 40 by reaction with 2,4-dinitrochlorobenzene in refluxing acetone, and treatment with R- -)-phenylglycinol in refluxing n-butanol generated the chiral pyridinium 77. Reduction to... [Pg.366]

Likewise, a cis-2,6-disubstituted piperidine natural product, (-)-lobeline (98, Scheme 8.4.30) was synthesized from the chiral Af-alkyl pyridinium salt ent-80 via a sequence that included addition of a Reformatsky reagent to an intermediate oxazolidine. °... [Pg.368]

Chiral and nonracemic A-cyanomethyloxazolidines in diastereoselective synthesis, particularly of pyrrolidine and piperidine derivatives 99CSR383. [Pg.253]

Diastereoselective synthesis, particularly of piperidine derivatives using chiral and nonracemic A-cyanomethyloxazolidines 99CSR383. [Pg.258]

Reaction of the chiral piperidine derivative 602 with the activated alkyne 603 afforded the corresponding oxazoloquinoline derivative 604 (98H747) (Scheme 102). [Pg.148]

A representative example is the cyclic enamide 1, containing an optically active A-camphanoyl substituent as a chiral auxiliary82. Treatment of 1 at — 78 C with hydrogen chloride and then a Lewis acid leads to the chiral A -acyliminium intermediate that is alkylated with high stereoselectivity to provide optically active piperidine derivatives. [Pg.817]

Amidoalkylation of silyl enol ethers with /V-acyliiiiiiiium ions containing camphanoyl-derived acyl functions (see Appendix) as the chiral auxiliary leads to optically active 2-substituted piperidine derivatives with moderate to high diastereoselectivity, depending on the chiral auxiliary and the cnol ether82 99. The auxiliary is removed by hydrolysis with base or acid. [Pg.827]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

The enantioselectivity is due to the retention of the chiral sparteine in the lithiated reagent. The adducts have been used to synthesize a number of pyrrolidine and piperidine derivatives. [Pg.198]

Kibayashi and coworkers have used enantiometrically pure allylic silyl ethers obtained from amino acids in cycloaddition with nitrones (Eq. 8.49).71 Cyclic nitrone reacts with a chiral allyl ether to give selectively the exo and erythro isomer (de 90%). Optically active alkaloids containing a piperidine ring such as (+)-monomorine,71c (+)-coniine,71a and (-)-oncinotine71b have been prepared from the addition product. [Pg.252]

The first asymmetric synthesis of (-l-)-abresoline was achieved from the chiral piperidine derivative 153, which upon treatment of its hydroxy side-chain substituent with carbon tetrabromide, triphenylphosphine, and triethyl-amine cyclized to the frarcr-quinazolidine 154. Deketalization and silyl protection of the phenolic group, followed by stereoselective reduction with lithium tri-t -butylborohydride (L-Selectride ), gave an alcohol, which after acylation and deprotection furnished (-l-)-abresoline 155 (Scheme 25) <2005TL2669>. [Pg.26]

Enantiospecific syntheses of amino derivatives of benzo[ ]quinolizidine and indolo[2,3- ]quinolizidine compounds have also been achieved via A-acyliminium ion cyclization reactions, as an alternative to the more traditional Bischler-Napieralski chemistry (see Section 12.01.9.2.2). One interesting example involves the use of L-pyroglutamic acid as a chiral starting material to construct intermediates 240 via reaction with arylethylamine derivatives. Diisobutylaluminium hydride (DIBAL-H) reduction of the amide function in 240 and subsequent cyclization and further reduction afforded piperidine derivatives 241, which stereoselectively cyclized to benzo[ ]quinolizidine 242 upon treatment with boron trifluoride (Scheme 47) <1999JOC9729>. [Pg.37]

A similar strategy served to carry out the last step of an asymmetric synthesis of the alkaloid (—)-cryptopleurine 12. Compound 331, prepared from the known chiral starting material (l )-( )-4-(tributylstannyl)but-3-en-2-ol, underwent cross-metathesis to 332 in the presence of Grubbs second-generation catalyst. Catalytic hydrogenation of the double bond in 332 with simultaneous N-deprotection, followed by acetate saponification and cyclization under Mitsunobu conditions, gave the piperidine derivative 333, which was transformed into (—)-cryptopleurine by reaction with formaldehyde in the presence of acid (Scheme 73) <2004JOC3144>. [Pg.48]

Two RCM reactions were employed in a new and efficient route to a key chiral intermediate, isoquinuclidine 150, in the synthesis of alkaloid (-F)-catharanthine <06AG(I)5334>. The first RCM makes use of chiral enone 151, derived from L-serine, to generate a chiral dihydropyridinone 152. Intramolecular alkene metathesis of dialkenyl piperidine 153 generates 150, which represents the first example of the use of RCM in the generation of an azabicyclo[2.2.2]alkene system. [Pg.334]

A review was published covering recent progress in the stereoselective synthesis of piperidines <00S1781>. Routes described in detail include those derived from the chiral-pool, chiral auxiliaries, and catalytic asymmetric methodology. [Pg.252]

Asymmetric aza Diels-Alder reactions provide a useful route to optically active heterocyclics such as piperidines and tetrahydroquinolines.45 Although successful examples of diastereoselective approaches had been reported as early as 10 years ago,46 only recently have enantioselective reactions been accomplished.47 For example, the reaction of chiral amine-derived aromatic imine 115 with Brassard s diene 116 gives adduct 117 with up to 95% diaster-eoselectivity (Scheme 5-37).48... [Pg.296]


See other pages where Chiral piperidine is mentioned: [Pg.1052]    [Pg.1052]    [Pg.382]    [Pg.365]    [Pg.368]    [Pg.292]    [Pg.186]    [Pg.187]    [Pg.195]    [Pg.203]    [Pg.252]    [Pg.109]    [Pg.175]    [Pg.175]    [Pg.41]    [Pg.103]    [Pg.16]    [Pg.192]    [Pg.229]    [Pg.26]    [Pg.28]    [Pg.31]    [Pg.40]    [Pg.58]    [Pg.61]    [Pg.333]    [Pg.69]    [Pg.252]    [Pg.696]    [Pg.712]    [Pg.720]    [Pg.495]    [Pg.128]    [Pg.152]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Asymmetric synthesis of chiral piperidines

Chiral piperidines

Chiral piperidines

Chiral piperidines synthesis

Stereoselective Syntheses of Chiral Piperidines via Addition Reactions to 4-Pyridones

© 2024 chempedia.info