Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoelectron spectroscopy, valence

Tery L. Barr, Mengping Yin and Shikha Varma, Detailed x-ray photoelectron spectroscopy valence band and core level studied of select metals oxidations, J. Vac. Set. Technol. A, 10, 2383-2390 (1992). [Pg.235]

Electronic spectra of surfaces can give information about what species are present and their valence states. X-ray photoelectron spectroscopy (XPS) and its variant, ESC A, are commonly used. Figure VIII-11 shows the application to an A1 surface and Fig. XVIII-6, to the more complicated case of Mo supported on TiOi [37] Fig. XVIII-7 shows the detection of photochemically produced Br atoms on Pt(lll) [38]. Other spectroscopies that bear on the chemical state of adsorbed species include (see Table VIII-1) photoelectron spectroscopy (PES) [39-41], angle resolved PES or ARPES [42], and Auger electron spectroscopy (AES) [43-47]. Spectroscopic detection of adsorbed hydrogen is difficult, and... [Pg.690]

Ultraviolet photoelectron spectroscopy (UPS) is a variety of photoelectron spectroscopy that is aimed at measuring the valence band, as described in sectionBl.25.2.3. Valence band spectroscopy is best perfonned with photon energies in the range of 20-50 eV. A He discharge lamp, which can produce 21.2 or 40.8 eV photons, is commonly used as the excitation source m the laboratory, or UPS can be perfonned with synchrotron radiation. Note that UPS is sometimes just referred to as photoelectron spectroscopy (PES), or simply valence band photoemission. [Pg.308]

X-ray photoelectron spectroscopy (XPS) is among the most frequently used surface chemical characterization teclmiques. Several excellent books on XPS are available [1, 2, 3, 4, 5, 6 and 7], XPS is based on the photoelectric effect an atom absorbs a photon of energy hv from an x-ray source next, a core or valence electron with bindmg energy is ejected with kinetic energy (figure Bl.25.1) ... [Pg.1852]

XPS X-ray photoelectron spectroscopy Absorption of a photon by an atom, followed by the ejection of a core or valence electron with a characteristic binding energy. Composition, oxidation state, dispersion... [Pg.1852]

UPS UV photoelectron spectroscopy Absorption of UV light by an atom, after which a valence electron Is ejected. Chemical bonding, work function... [Pg.1852]

Ultraviolet photoelectron spectroscopy (UPS) [2, 3 and 4, 6] differs from XPS in that UV light (He I, 21.2 eV He II, 40.8 eV) is used instead of x-rays. At these low excitmg energies, photoemission is limited to valence electrons. [Pg.1860]

Concelcao J, Laaksonen R T, Wang L S, Guo T, Nordlander P and Smalley R E 1995 Photoelectron spectroscopy of transition metal clusters correlation of valence electronic structure to reactivity Rhys. Rev. B 51 4668... [Pg.2403]

The simplest, and perhaps the most important, information derived from photoelectron spectra is the ionization energies for valence and core electrons. Before the development of photoelectron spectroscopy very few of these were known, especially for polyatomic molecules. For core electrons ionization energies were previously unobtainable and illustrate the extent to which core orbitals differ from the pure atomic orbitals pictured in simple valence theory. [Pg.297]

Other techniques in which incident photons excite the surface to produce detected electrons are also Hsted in Table 1. X-ray photoelectron Spectroscopy (xps), which is also known as electron spectroscopy for chemical analysis (esca), is based on the use of x-rays which stimulate atomic core level electron ejection for elemental composition information. Ultraviolet photoelectron spectroscopy (ups) is similar but uses ultraviolet photons instead of x-rays to probe atomic valence level electrons. Photons are used to stimulate desorption of ions in photon stimulated ion angular distribution (psd). Inverse photoemission (ip) occurs when electrons incident on a surface result in photon emission which is then detected. [Pg.269]

An important property of the surface behaviour of oxides which contain transition metal ions having a number of possible valencies can be revealed by X-ray induced photoelectron spectroscopy. The energy spectrum of tlrese electrons give a direct measure of the binding energies of the valence electrons on the metal ions, from which the charge state can be deduced (Gunarsekaran et al., 1994). [Pg.125]

Several UHV techniques which have been developed have not found such wide use in corrosion analysis, despite potential applicability. Ultraviolet photoelectron spectroscopy (UPS) is one of these, operating in a similar fashion to XPS (but using an ultraviolet excitation), and probing the valence electrons, rather than the core electrons of the atoms. Because the energies of the valence electrons are so very sensitive to the precise state of the atom, the technique is in principle very informative however exactly this high sensitivity renders the data difficult to interpret, particularly as a routine... [Pg.33]

The nature of the final state depends upon the energy, hv, of the exciting photons. In X-ray photoelectron spectroscopy (XPS) the exciting photons are provided by sources such as A1 Ka (1,486 eV) or Mg Ka (1,253 eV) and excitation of the core electrons of the molecules is observed. In UV photoelectron spectroscopy (UPS), Hel (21.2eV) or Hell (40.8 eV) radiation is used and excitation from the valence region of the neutral molecule is observed. XPS and UPS are surface-sensitive techniques, which are capable of providing extremely useful information on the chemical nature of a surface or interface and, in the case of the XPS, the conformational state of the molecules at the surface [64]. [Pg.703]

The low BE region of XPS spectra (<20 — 30 eV) represents delocalized electronic states involved in bonding interactions [7]. Although UV radiation interacts more strongly (greater cross-section because of the similarity of its energy with the ionization threshold) with these states to produce photoelectrons, the valence band spectra measured by ultraviolet photoelectron spectroscopy (UPS) can be complicated to interpret [1], Moreover, there has always been the concern that valence band spectra obtained from UPS are not representative of the bulk solid because it is believed that low KE photoelectrons have a short IMFP compared to high KE photoelectrons and are therefore more surface-sensitive [1], Despite their weaker intensities, valence band spectra are often obtained by XPS instead of UPS because they provide... [Pg.103]

Extensive discussion on the ionization potentials of 1,2,5-thiadiazole and its derivatives can be found in CHEC(1984) and CHEC-II(1996) <1984CHEC(6)513, 1996CHEC-II(4)355>. Hel photoelectron spectroscopy, inner-shell electron energy loss spectroscopy involving the S2p, S2s, Cls and Nls edges, and Sis synchrotron radiation photoabsorption spectroscopy were used to probe the occupied and unoccupied valence levels of benzothiadiazole 2 <1991MI165>. [Pg.523]


See other pages where Photoelectron spectroscopy, valence is mentioned: [Pg.249]    [Pg.249]    [Pg.308]    [Pg.308]    [Pg.2749]    [Pg.290]    [Pg.440]    [Pg.20]    [Pg.23]    [Pg.285]    [Pg.300]    [Pg.387]    [Pg.61]    [Pg.178]    [Pg.10]    [Pg.185]    [Pg.77]    [Pg.703]    [Pg.578]    [Pg.165]    [Pg.218]    [Pg.516]    [Pg.43]    [Pg.80]    [Pg.205]    [Pg.69]    [Pg.161]    [Pg.236]    [Pg.91]    [Pg.292]    [Pg.113]    [Pg.62]    [Pg.20]   


SEARCH



Photoelectron spectroscopy electron emission from valence

Photoelectron spectroscopy valence relaxation

Photoelectron spectroscopy valence-shell electrons

Photoelectron spectroscopy, valence bond

Photoelectron spectroscopy, valence bond description

Spectroscopy valence

Valence and core photoelectron spectroscopies

© 2024 chempedia.info