Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reductive biradical

Under normal conditions, excited carbonyl compounds isomerize to cyclobutanols (see Section 7. A.1.1.5.) via intramolecular y-hydrogen abstraction and closure of the intermediate 1,4-biradical. Nevertheless, a similar, formally /i-hydrogen abstraction, step leading to cyclopropanols occurs with several A-functionalized ketones (see Houben-Weyl, Vol. 4/5 b, p 797, literature up to 1971, and Vol. 6/la, part 2, pp 788-799, literature up to 1975 for a general mechanistic description of the formation of alcohols by photochemical reduction of carbonyl compounds, see Vol. 6/1 b, p432). [Pg.106]

Hydrogen abstraction can lead to the dissociation of some carbonyl derivatives with aliphatic chains. The primary process is the reduction of the carbonyl group, but the biradical formed in the primary photochemical process then rearranges to two closed-shell molecules (Figure 4.58). [Pg.135]

Figure 4. Examples of low-temperature limit of rate constant of solid-state chamical reactions obtained in different laboratories of the USSR, United States, Canada, and Japan (1) formaldehyde polymerization chain growth (USSR, 1973 [56]) (2) reduction of coordination Fe-CO bond in heme group of mioglobin broken by laser pulse (United States, 1975 [65]) (3) H-atom transfer between neighboring radical pairs in y-irradiated dimethylglyoxime crystal (Japan, 1977, [72], (4, 5) H-atom abstraction by methyl radicals from neighboring molecules of glassy methanol matrix (4) and ethanol matrix (5) (Canada, United States, 1977 [11, 78]) (6) H-atom transfer under sterically hampered isomerization of aryl radicals (United States, 1978 [73]) (7) C-C bond formation in cyclopentadienyl biradicals (United States, 1979 [111]) (8) chain hydrobromination of ethylene (USSR, 1978 [119]) (9) chain chlorination of ethylene (USSR, 1986 [122]) (10) organic radical chlorination by molecular chlorine (USSR, 1980 [124,125]) (11) photochemical transfer of H atoms in doped monocrystals of fluorene (B. Prass, Y. P. Colpa, and D. Stehlik, J. Chem. Phys., in press.). Figure 4. Examples of low-temperature limit of rate constant of solid-state chamical reactions obtained in different laboratories of the USSR, United States, Canada, and Japan (1) formaldehyde polymerization chain growth (USSR, 1973 [56]) (2) reduction of coordination Fe-CO bond in heme group of mioglobin broken by laser pulse (United States, 1975 [65]) (3) H-atom transfer between neighboring radical pairs in y-irradiated dimethylglyoxime crystal (Japan, 1977, [72], (4, 5) H-atom abstraction by methyl radicals from neighboring molecules of glassy methanol matrix (4) and ethanol matrix (5) (Canada, United States, 1977 [11, 78]) (6) H-atom transfer under sterically hampered isomerization of aryl radicals (United States, 1978 [73]) (7) C-C bond formation in cyclopentadienyl biradicals (United States, 1979 [111]) (8) chain hydrobromination of ethylene (USSR, 1978 [119]) (9) chain chlorination of ethylene (USSR, 1986 [122]) (10) organic radical chlorination by molecular chlorine (USSR, 1980 [124,125]) (11) photochemical transfer of H atoms in doped monocrystals of fluorene (B. Prass, Y. P. Colpa, and D. Stehlik, J. Chem. Phys., in press.).
Both N-N and N-C bond fission occurs on irradiation of the hydrazone derivatives (191). The photodegradation of the phenylhydrazone and the hydrazone of benzil have also been described. a-Ketoiminyl radicals are formed on irradiation of oximino ketones at low temperature. A study of the photochemical decomposition of sulfamic esters and their use as initiators of cross-linking of a melamine resin have been described. The bispyridinyl radical (192) is formed by one electron reduction of the corresponding pyridinium salts. The irradiation of this biradical at 77 K results in C-N bond fission with the formation of benzene-1,3-diyl. The predominant products from the irradiation (X,> 340 nm) of (193) in methanol were identified as A -hydroxy-2-pyridone and (194) from the fission of the C-O bond. Other products were 2-pyridone, (195) and (196) that arise from O-N bond fission. The reaction is to some extent substituent dependent and a detailed analysis of the reaction systems has identified an intramolecular exciplex as the key intermediate in the C-O bond heterolysis. [Pg.261]


See other pages where Photochemical reductive biradical is mentioned: [Pg.549]    [Pg.549]    [Pg.377]    [Pg.54]    [Pg.55]    [Pg.40]    [Pg.103]    [Pg.73]    [Pg.130]    [Pg.88]    [Pg.157]    [Pg.741]    [Pg.1037]    [Pg.73]   


SEARCH



Biradical

Biradicals

Photochemical reduction

© 2024 chempedia.info