Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical intermolecular

Bicyclic [6.4.0]dodecane systems have been prepared [17] by catalyzed and photochemical intermolecular cycloaddition of the cyclooct-2-en-l-ones 10 and 1,3-butadiene (1) and by catalyzed intramolecular cycloaddition of trienone 11 (Scheme 3.4). [Pg.102]

Solid mixtures (by cooling the melt) of benzoquinones with polymethyl-benzenes were studied (Scheme 58) [95]. It was shown by single-crystal X-ray diffraction, PXD, DSC, IR, and phase diagram construction that the combination of duroquinone and duiene formed a 2 1 molecular compound. This molecular compound underwent photochemical intermolecular hydrogen abstraction to give durohydroquinone and two adducts. Other combinations also underwent similar... [Pg.51]

It is also worthwhile comparing the intramolecular photochemical cycloaddition reactions of ethylenic aldehydes and ketones with free radical intramolecular additions. For instance, irradiation of 5-hexen-2-one (470) (Scheme 161) in the gas phase gives the oxetane 471 as only cyclized product, as expected from the known photochemical intermolecular reaction between olefins and ketones. If the irradiation is conducted in solution 470 gives 471 (26%) and 472 (18%). With other y,< -unsaturated ketones, the bicyclic compound analogous to 472 may become the major product. With 2-allylcyclanones such as 473 (Scheme 161) bicyclic compounds are obtained (80% yield) as a mixture of 474 and 475, with 475 being the major product, but such compounds are difficult to isolate. " In the same manner, selective irradiation of the carbonyl group of 2-acyl-2,3-dihydro-4/f-pyrans (476) leads exclusively (23% yield) to exo-brevicomin (477) (a sex attractant), neither oxetane formation nor Norrish type II reaction being observed. The formation of the compounds 472, 475, and 477 which was considered as unexpected... [Pg.265]

Photochemical intermolecular and intramolecular Pauson-Khand reactions of the allq ne cobalt complexes [RC=CH Co(CO)3 2] with alkenes using a flow microreactor were reported. The reaction of [PhC=CH Co(CO)3 2] with norbornene in a batch reactor led to the product in 32% yield, while the flow reactor resulted in 88% yield. " ... [Pg.70]

Either UV-VIS or IR spectroscopy can be combined with the technique of matrix isolation to detect and identify highly unstable intermediates. In this method, the intomediate is trapped in a solid inert matrix, usually one of the inert gases, at very low temperatures. Because each molecule is surrounded by inert gas atoms, there is no possiblity for intermolecular reactions and the rates of intramolecular reactions are slowed by the low temperature. Matrix isolation is a very useful method for characterizing intermediates in photochemical reactions. The method can also be used for gas-phase reactions which can be conducted in such a way that the intermediates can be rapidly condensed into the matrix. [Pg.227]

Intermolecular photocycloadditions of alkenes can be carried out by photosensitization with mercury or directly with short-wavelength light.179 Relatively little preparative use has been made of this reaction for simple alkenes. Dienes can be photosensitized using benzophenone, butane-2,3-dione, and acetophenone.180 The photodimerization of derivatives of cinnamic acid was among the earliest photochemical reactions to be studied.181 Good yields of dimers are obtained when irradiation is carried out in the crystalline state. In solution, cis-trans isomerization is the dominant reaction. [Pg.544]

The third crystalline form, y-cinnamic acid, is photochemically stable since the intermolecular distance (4.7-5.1 A) is apparently too large for bond formation to occur. [Pg.245]

The thermal, but not the photochemical, decomposition of ferro-cenylsulphonyl azide (14) in benzene gave some intermolecular aromatic substitution product FCSO2NHC6H5 (6.5%) but no intermolecular cyclization product (17). Contrariwise, photolysis of 14 in benzene gave 17 but no anilide 1 ). [Pg.32]

Amaut LG, Formosinho SJ (1993) Excited-state proton-transfer reactions. 1. Fundamentals and intermolecular reactions. J Photochem Photobiol A Chem 75 1-20... [Pg.24]

The second group of intermolecular reactions (2) includes [1, 2, 9, 10, 13, 14] electron transfer, exciplex and excimer formations, and proton transfer processes (Table 1). Photoinduced electron transfer (PET) is often responsible for fluorescence quenching. PET is involved in many photochemical reactions and plays... [Pg.194]

Hynes JT, Tran-Thi TH, Grunucci G (2002) Intermolecular photochemical proton transfer in solution new insights and perspectives. J Photochem Photobiol A Chem 154 3-11... [Pg.265]

Numerous examples of intermolecular and intramolecular photocycloaddition to heterocyclic systems (including the dimerization of individual heterocycles) have now been reported. Two types of cycloaddition can readily be effected photochemically, namely, [n2 + 2] and [ 4 + 4] additions. Although concerted suprafacial additions of this type are allowed photochemical processes, in reality many cycloadditions occur via diradicals, zwitterions or exciplexes. [Pg.278]

Intermolecular addition of photochemically generated nitrenes and in particular acylnitrenes to alkenes provides a useful and widely applied route to aziridines.385 An analogous intramolecular photoreaction is thought to be involved in the conversion of the o-azidophenylethylfuran 461 into the pyrrolo[l,2-a]quinoline 462 as outlined in Scheme 13,386 and intramolecular addition to an azo group has been observed in the 8-azido-1-arylazonaphthalenes 463.387... [Pg.315]

Minima in Ti are usually above the So hypersurface, but in some cases, below it (ground state triplet species). In the latter case, the photochemical process proper is over once relaxation into the minimum occurs, although under most conditions further ground-state chemistry is bound to follow, e.g., intermolecular reactions of triplet carbene. On the other hand, if the molecule ends up in a minimum in Ti which lies above So, radiative or non-radiative return to So occurs similarly as from a minimum in Si. However, both of these modes of return are slowed down considerably in the Ti ->-So process, because of its spin-forbidden nature, at least in molecules containing light atoms, and there will usually be time for vibrational motions to reach thermal equilibrium. One can therefore not expect funnels in the Ti surface, at least not in light-atom molecules. [Pg.20]

In this chapter are summarized the photochemical reactions wherein the primary chemical event is inter- or intramolecular hydrogen transfer to the excited chromophor. In intermolecular reactions hydrogen abstraction usually implies reduction or hydrodimerization of the excited molecule intramolecular hydrogen abstraction is frequently followed by either ring closure of the diradical or fragmentation to afford unsaturated molecules. [Pg.44]

The synthetic applications 440) and mechanistic aspects 4411 of intermolecular photocycloaddition reactions of arenes to olefins have been reviewed recently. Intramolecular cycloadditions442a,b) have been studied in the context of the photochemical behaviour of bichromophoric molecules, as to investigate interchromophoric interactions in polyfunctional molecules. Three types of addition products can be formed in the photocycloaddition of benzene to an alkene (4.37)441. ... [Pg.54]

In a combination of photochemical cyclization and a radical reaction Yoshimatsu et al synthesized 2-azabicyclo[33.0locta-3,7-diene 169 from the trienal hydrazone 166.1891 The domino process was initiated by irradiation of 166 at 400-500 nm in benzene. The transformation may include an intermolecular [2+2]-cyclization, followed by ring opening to give... [Pg.60]

Photochemical reactions of the pyrimidine polymers in solution were studied to determine the quantum yields of the intramolecular photodimerization of the pyrimidine units along the polymer chains. Photoreactions of the polymers were carried out in very dilute solutions to avoid an intermolecular(interchain) photodimerization. Quantum yields determined at 280 nm for the polymers (1-6 in Figure 1) are listed in Table I. The quantum yield of the 5-bromouracil polymer [poly(MAOU-5Br)] could not be determined because of side reactions of the base during the irradiation. [Pg.306]

Scheme 1 summarizes four different approaches used to characterize dendrimer structures by photophysical and photochemical probes 1. Non-covalent, inter-molecularly bound interior probes - to study the internal cavities and the encapsulation abilities of dendrimers. 2. Non-covalent, intermolecularly bound surface probes - to study surface characteristics of dendrimers. 3. Covalently linked probes on dendrimer surfaces - to study the molecular dynamics of dendrimers. 4. Covalently linked probes at the dendrimer central core - to study the site isolation of the core moiety and define the hydrodynamic volume of dendrimers by the concentric dendrimer shells. Critical literature in these four categories will be described using representative examples. [Pg.310]

This chapter describes the synthesis, properties, and biomedical applications of cyanine and squaraine dyes encapsulated in CDs, CBs, Leigh-type tetralactam macrocycles, aptamers, and micro- or nano-particles. The optical and photochemical properties of supramolecular guest-host nanostructures that are based on intra-and intermolecular complexes of crown-containing styryl dyes with metal cations, and aggregates of carbocyanine dyes are discussed in a separate review [18]. [Pg.161]

Another photochemically driven proton transfer occurs in the system 46. This molecule on sublimation at low temperatures crystallizes in form 46a having infinite chains of intermolecular hydrogen bonds connecting zwitterionic molecules. Its fluorescence at such temperatures is essentially that of the acridinium ion. However, on prolonged UV irradiation, conversion to 46b occurs and the... [Pg.160]


See other pages where Photochemical intermolecular is mentioned: [Pg.229]    [Pg.229]    [Pg.18]    [Pg.247]    [Pg.229]    [Pg.229]    [Pg.18]    [Pg.247]    [Pg.31]    [Pg.349]    [Pg.790]    [Pg.209]    [Pg.247]    [Pg.256]    [Pg.129]    [Pg.239]    [Pg.350]    [Pg.53]    [Pg.279]    [Pg.22]    [Pg.290]    [Pg.435]    [Pg.96]    [Pg.123]    [Pg.120]    [Pg.698]    [Pg.730]    [Pg.142]    [Pg.214]   
See also in sourсe #XX -- [ Pg.278 , Pg.279 ]

See also in sourсe #XX -- [ Pg.278 , Pg.279 ]




SEARCH



Photochemical reactions, intermolecular

© 2024 chempedia.info