Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical adiabatic

Knowledge of the underlying nuclear dynamics is essential for the classification and description of photochemical processes. For the study of complicated systems, molecular dynamics (MD) simulations are an essential tool, providing information on the channels open for decay or relaxation, the relative populations of these channels, and the timescales of system evolution. Simulations are particularly important in cases where the Bom-Oppenheimer (BO) approximation breaks down, and a system is able to evolve non-adiabatically, that is, in more than one electronic state. [Pg.251]

A further model Hamiltonian that is tailored for the treatment of non-adiabatic systems is the vibronic coupling (VC) model of Koppel et al. [65]. This provides an analytic expression for PES coupled by non-adiabatic effects, which can be fitted to ab initio calculations using only a few data points. As a result, it is a useful tool in the description of photochemical systems. It is also very useful in the development of dynamics methods, as it provides realistic global surfaces that can be used both for exact quantum wavepacket dynamics and more approximate methods. [Pg.255]

Chlorine free radicals used for the substitutioa reactioa are obtaiaed by either thermal, photochemical, or chemical means. The thermal method requites temperatures of at least 250°C to iaitiate decomposition of the diatomic chlorine molecules iato chlorine radicals. The large reaction exotherm demands close temperature control by cooling or dilution, although adiabatic reactors with an appropriate diluent are commonly used ia iadustrial processes. Thermal chlorination is iaexpeasive and less sensitive to inhibition than the photochemical process. Mercury arc lamps are the usual source of ultraviolet light for photochemical processes furnishing wavelengths from 300—500 nm. [Pg.507]

The electronic wave function has now been removed from the first two terms while the curly bracket contains tenns which couple different electronic states. The first two of these are the first- and second-order non-adiabatic coupling elements, respectively, vhile the last is the mass polarization. The non-adiabatic coupling elements are important for systems involving more than one electronic surface, such as photochemical reactions. [Pg.55]

Lippert E, Ayuk AA, Rettig W, Wermuth G (1981) Adiabatic photoreactions in dilute solutions of p-substituted N, N -dialkylanilines and related donor-acceptor compounds. J Photochem 17 237-241... [Pg.303]

If the EDA and CT pre-equilibria are fast relative to such a (follow-up) process, the overall second-order rate constant is k2 = eda c e In this kinetic situation, the ion-radical pair might not be experimentally observed in a thermally activated adiabatic process. However, photochemical (laser) activation via the deliberate irradiation of the charge-transfer absorption (hvct) will lead to the spontaneous generation of the ion-radical pair (equations 4, 5) that is experimentally observable if the time-resolution of the laser pulse exceeds that of the follow-up processes (kf and /tBet)- Indeed, charge-transfer activation provides the basis for the experimental demonstration of the viability of the electron-transfer paradigm in Scheme l.21... [Pg.198]

As such, the thermal process in equation (60) proceeds via the same reactive intermediates (arising from an adiabatic electron transfer) as that observed in the photochemical processes in equations (57) and (58). The proposed electron-transfer activation for the thermal retropinacol reaction is further confirmed by the efficient cleavage of benzpinacol with tris-phenanthroline iron(III), which is a prototypical outer-sphere one-electron oxidant195 (equation 61). [Pg.257]

Since electron transfer (log kE) represents the adiabatic counterpart to the photochemical process (hvcr), the triad in (87) is (stoichiometrically) equivalent to that in (63) and its collapse to the Wheland intermediate will lead to nitration products that are the same as those formed in charge-transfer nitration. When such a comparison of electrophilic and charge-transfer nitrations is carried out in quantitative detail, the aromatic donors fall roughly into two categories. [Pg.259]

The thermochemical study of photochemical or photochemically activated processes is not amenable to most of the calorimeters described in this book, simply because they do not include a suitable radiation source or the necessary auxiliary equipment to monitor the electromagnetic energy absorbed by the reaction mixture. However, it is not hard to conceive how a calorimeter from any of the classes mentioned in chapter 6 (adiabatic, isoperibol, or heat flow) could be modified to accommodate the necessary hardware and be transformed into a photocalorimeter. [Pg.147]

Adiabatic Photochemical Reaction Mechanisms or How to Produce Large Stokes Shifts... [Pg.111]

Figure 5.1. Various adiabatic photochemical reaction mechanisms (see text for details), (a) Simple case of dual fluorescence (b) illumination changes sample (i.e., photochemistry) (c) strong fluorescence quenching (photochemical funnel) (d) competitively coupled product species (e) consecutively coupled product species. Figure 5.1. Various adiabatic photochemical reaction mechanisms (see text for details), (a) Simple case of dual fluorescence (b) illumination changes sample (i.e., photochemistry) (c) strong fluorescence quenching (photochemical funnel) (d) competitively coupled product species (e) consecutively coupled product species.
W. Rettig, R. Fritz, and J. Springer, Fluorescence probes based on adiabatic photochemical reactions, in Photochemical Processes in Organized Molecular Systems (K. Honda, ed.), p. 61, Elsevier Science Publishers, Amsterdam (1991). [Pg.143]

W. Rettig, W. Majenz, R. Lapouyade, and M. Vogel, Adiabatic photochemistry with luminescent products, /. Photochem. Photobiol.A Chem. 65,95-110(1992). [Pg.149]

Evidence for adiabatic photolytic cycloreversions at room temperature has been obtained more frequently in recent years [121,122], The adiabatic generation of singlet oxygen by photochemical cycloreversion of the anthracene and 9,10-dimethylanthracene endoperoxides 105 and 106 proceeds with wavelength-dependent quantum yields of 0.22 and 0.35, respectively, and involves the second excited singlet state of the endoperoxides [123]. Photodissociation of the 1,4-endoperoxide from l,4-dimethyl-9,10-diphenylanthracene was found to yield both fragments, i.e., molecular oxygen and l,4-dimethyl-9,10-diphenylanthracene, in their electronically excited state [124]. [Pg.204]


See other pages where Photochemical adiabatic is mentioned: [Pg.299]    [Pg.310]    [Pg.311]    [Pg.385]    [Pg.767]    [Pg.169]    [Pg.59]    [Pg.404]    [Pg.415]    [Pg.416]    [Pg.491]    [Pg.197]    [Pg.229]    [Pg.111]    [Pg.111]    [Pg.252]    [Pg.334]    [Pg.280]    [Pg.282]    [Pg.295]    [Pg.140]    [Pg.142]    [Pg.353]    [Pg.353]    [Pg.367]    [Pg.385]    [Pg.211]    [Pg.140]    [Pg.203]    [Pg.203]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.209]   
See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Photochemical reactions adiabatic

© 2024 chempedia.info