Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphomonoesterases group-specific

Phosphates of pharmaceutical interest are often monoesters (Sect. 9.3), and the enzymes that are able to hydrolyze them include alkaline and acid phosphatases. Alkaline phosphatase (alkaline phosphomonoesterase, EC 3.1.3.1) is a nonspecific esterase of phosphoric monoesters with an optimal pH for catalysis of ca. 8 [140], In the presence of a phosphate acceptor such as 2-aminoethanol, the enzyme also catalyzes a transphosphorylation reaction involving transfer of the phosphoryl group to the alcohol. Alkaline phosphatase is bound extracellularly to membranes and is widely distributed, in particular in the pancreas, liver, bile, placenta, and osteoplasts. Its specific functions in mammals remain poorly understood, but it seems to play an important role in modulation by osteoplasts of bone mineralization. [Pg.56]

Acid phosphatase (acid phosphomonoesterase, EC 3.1.3.2) also catalyzes the hydrolysis of phosphoric acid monoesters but with an acidic pH optimum. It has broad specificity and catalyzes transphosphorylations. Acid phosphatases are a quite heterogeneous group with monomeric, dimeric, larger glycoprotein, and membrane-bound forms. Acid phosphatase activity is present in the heart, liver, bone, prostate, and seminal fluid. Prostate carcinomas produce large quantities of acid phosphatase, and the enzyme is, therefore, used as a biomarker [141]. [Pg.56]

This enzyme is a non-specific phosphomonoesterase that shows maximum activity at pH values greater than 8.569 It also catalyzes the transfer of phosphoryl groups. These reactions involve the formation of a phosphoseryl intermediate and the hydrolyzed substrate. The phosphoenzyme may transfer the phosphoryl group to water or to an acceptor molecule to give a new phosphoester (equations 19 and 20, where E—P represents the covalently bound phosphoenzyme and E-P a non-covalent complex, in which phosphate is coordinated to the zinc). The phosphoenzyme may be formed from either direction. [Pg.610]


See other pages where Phosphomonoesterases group-specific is mentioned: [Pg.318]    [Pg.361]    [Pg.19]    [Pg.27]    [Pg.168]    [Pg.168]    [Pg.176]    [Pg.210]   


SEARCH



Group specificity

Phosphomonoesterases

Specific groupings

© 2024 chempedia.info