Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols, from diazonium salts

Cupric nitrate cuprous oxide Phenols from diazonium salts or Pschorr ring closure... [Pg.63]

Whilst azo compounds prepared from diazonium salts and phenolic or keto-enol coupling components are often depicted in the hydroxyazo form (4.11), an alternative tautomeric structure can be drawn for such compounds (Scheme 4.19). This ketohydrazone tautomer (4.21) can, in cases where the azo and hydroxy groups are located on adjacent carbon atoms, exhibit hydrogen bonding between the two groups as shown. Similar pairs of structures, but without hydrogen bonding, can be drawn for p-hydroxyazo compounds. [Pg.194]

Hydroxy derivatives of biphenyl can be prepared from diazonium salts, such as the chloride or sulfate, and phenols if no alkali is added.28- 29, 30 31-32 From a solution of diazotized aniline in a large excess of-phenol, a good yield of a mixture of 2- and 4-hydroxybiphenyl is obtained in addition to diphenyl ether. [Pg.240]

Cohen, T., Dietz, A. G., Jr., Miser, J. R. A simple preparation of phenols from diazonium ions via the generation and oxidation of aryl radicals by copper salts. J. Org. Chem. 1977,42, 2053-2058. [Pg.669]

Phenol-ethers and -esters from diazonium salts... [Pg.95]

The most noteworthy reaction of azo-compounds is their behaviour on reduction. Prolonged reduction first saturates the azo group, giving the hydrazo derivative (C NH-NH C), and then breaks the NH NH linkage, with the formation of two primary amine molecules. If method (1) has been employed to prepare the azo-compound, these two primary amines will therefore be respectively (a) the original amine from which the diazonium salt was prepared, and (6) the amino derivative of the amine or phenol with which the diazonium salt was coupled. For example, amino-azobenzene on complete reduction gives one equivalent of aniline, and one of p-phenylene diamine, NHaCeH NH benzene-azo-2-naphthoI similarly gives one equivalent of aniline and one of... [Pg.210]

Reaction with arenediazonium salts Adding a phe nol to a solution of a diazonium salt formed from a primary aromatic amine leads to formation of an azo compound The reaction is carried out at a pH such that a significant portion of the phenol is pres ent as its phenoxide ion The diazonium ion acts as an electrophile toward the strongly activated ring of the phenoxide ion... [Pg.1004]

Toluene from Toluidine.—It is often desirable to obtain tbe hydiocarbon from the base. The process of diazotisntion offers the only convenient method. The diazonium salt may be reduced by alcohol (Reaction 1, p. 162) or, as in the piesent instance, by sodium stannite. Less direct methods are the con-veision of the diazonium compound into (i) the hydrazine (see p. 174), (2) the acid and distillation with lime (p. 200), (3) the halogen derivative and reduction with sodium amalgam, 01, finally (4) the phenol and distillation with zinc dust. [Pg.284]

Ciprofibrate (48), a more potent lipid-lowering agent clofibrate, is prepared from Simmons-Smith product by Sandmeyer replacement of the amino group by a hydroxyl via the diazonium salt. Phenol undergoes the Reimer-Thiemann like process common to these agents upon alkaline treatment with acetone and chloroform to complete the synthesis of ci profib-rate (48). [Pg.44]

Arylamines are converted by diazotization with nitrous acid into arenediazonium salts, ArN2+ X-. The diazonio group can then be replaced by many other substituents in the Sandmeyer reaction to give a wide variety of substituted aromatic compounds. Aryl chlorides, bromides, iodides, and nitriles can be prepared from arenediazonium salts, as can arenes and phenols. In addition to their reactivity toward substitution reactions, diazonium salts undergo coupling with phenols and arylamines to give brightly colored azo dyes. [Pg.958]

Entries 7 and 8 illustrate conversion of diazonium salts to phenols. Entries 9 and 10 use the traditional conditions for the Sandmeyer reaction. Entry 11 is a Sandmeyer reaction under in situ diazotization conditions, whereas Entry 12 involves halogen atom transfer from solvent. Entry 13 is an example of formation of an aryl iodide. Entries 14 and 15 are Schiemann reactions. The reaction in Entry 16 was used to introduce a chlorine substituent on vancomycin. Of several procedures investigated, the CuCl-CuCl2 catalysis of chlorine atom transfer form CC14 proved to be the best. The diazonium salt was isolated as the tetrafluoroborate after in situ diazotization. Entries 17 and 18 show procedures for introducing cyano and azido groups, respectively. [Pg.1032]

Apart from complex formation involving metal ions (as discussed in Chapter 4), crown ethers have been shown to associate with a variety of both charged and uncharged guest molecules. Typical guests include ammonium salts, the guanidinium ion, diazonium salts, water, alcohols, amines, molecular halogens, substituted hydrazines, p-toluene sulfonic acid, phenols, thiols and nitriles. [Pg.138]

With a phenol, naphthol or keto-enol coupling component the mechanism is given by Scheme 4.4, in which blocking of the p-position forces coupling at the o-position. In certain cases involving the use of feebly reactive diazonium salts, loss of the proton from the transition state (4-1) in Scheme 4.4 may be slow but may often be facilitated by the addition of a tertiary base, such as pyridine, to the coupling mixture [7,8]. [Pg.182]

A general method leads from the primary aromatic amines by way of the diazonium salts to the phenols (p. 282). [Pg.240]

Alcohols may be prepared (1) by hydration of alkenes (1) in presence of an acid and (11) by hydroboratlon-oxidatlon reaction (2) from carbonyl compounds by (1) catalytic reduction and (11) the action of Grignard reagents. Phenols may be prepared by (1) substitution of (1) halogen atom In haloarenes and (11) sulphonic acid group In aiyl sulphonic acids, by -OH group (2) by hydrolysis of diazonium salts and (3) industrially from cumene. [Pg.74]

This preparative scheme leads to only 30% yield due to the side reactions between the meto-astatoaniline diazonium salt and astato-phenol, which cannot be eliminated even by continuous extraction of the product with n-heptane (167). All the astatophenols synthesized to date have been identified by either HPLC (99,104) or TLC (160,166,167). Their dissociation constants (KJ have been established from extraction experiments by measuring the relative distribution of compounds between aqueous borax buffer solutions and n-heptane as a function of acidity. On the basis of these derived values, the Hammett a-constants and hence the field (F) and resonance (R) effects have been estimated for these compounds (167) (see Table VI). The field effect for astatine was found to be considerably weaker than that for other halogens the resonance effect was similar to that for iodine (162). [Pg.65]

Because of the small concentration of the 2 1 complex the last term can be ignored. From the extreme rate values in the absence of zinc and with an excess of zinc, 2i and 22 are determined as 2.4 X 104 min.-1 and 1.57 min.-1 respectively. These values can be combined with the trend in the rate constants to give the stability constant of the reactive complex, presumably Zn(OR)(OAc), as 3 X 107. For the simple zinc complex in water the literature values of the stability constant for the 1 1 complex vary from 2.5 X 108 to 6.3 X 108. The diazo coupling reaction of the complex indicates the smaller effect of coordination vis a vis protonation since this reaction is very sensitive to such effects and does not proceed with phenols. Unfortunately the choice of cations for such a reaction is restricted since the cation should not interfere with the analytical methods used to obtain the kinetic data nor should it introduce additional reactions such as occur with transition metal cations which can catalyze the decomposition of the diazonium salt via a redox process. [Pg.156]

At low acid concentrations, nitric oxide tends to form. This evidently may attack nitrosophenol to form diazonium compounds directly. The diazonium salts, in turn, may couple with unreacted phenol to give colored products. Nitrous acid may also produce nitrophenols from phenols. The mechanism of this reaction may involve oxidation of initially formed nitrosophenols, homolytic attack by nitrogen dioxide, or nucleophilic attack by nitrite ions [1]. [Pg.453]

Diazonium Salts from 3-Amino-1,2,4-thiadiazoles The 3-amino group in 1,2,4-thiadiazoles (e.g. in the 5-phenyl homolog) is also capable of being diazotized, preferably in concentrated phosphoric acid. The resulting diazonium salt may be coupled in the usual way, but with sufficiently reactive partners only (e.g. phenol and 0-naphthol).126... [Pg.188]

The most important synthesis of phenols in the laboratory is from amines by hydrolysis of their corresponding diazonium salts, as described in Section 22.17 ... [Pg.1008]


See other pages where Phenols, from diazonium salts is mentioned: [Pg.54]    [Pg.54]    [Pg.28]    [Pg.67]    [Pg.96]    [Pg.206]    [Pg.310]    [Pg.181]    [Pg.191]    [Pg.247]    [Pg.282]    [Pg.235]    [Pg.46]    [Pg.60]    [Pg.115]    [Pg.1554]    [Pg.18]    [Pg.155]    [Pg.302]    [Pg.59]    [Pg.59]    [Pg.101]    [Pg.204]   
See also in sourсe #XX -- [ Pg.766 , Pg.769 , Pg.792 ]

See also in sourсe #XX -- [ Pg.766 , Pg.769 , Pg.792 ]




SEARCH



Diazonium phenolates

Diazonium salts

Diazonium salts phenols

From diazonium salts

From phenols

Phenols from aryl diazonium salts

© 2024 chempedia.info