Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixture phase diagram

Figure 5.20 Pressure-temperature phase diagram mixture of ethane and n-heptane... Figure 5.20 Pressure-temperature phase diagram mixture of ethane and n-heptane...
So far we have considered only a single component. However, reservoir fluids contain a mixture of hundreds of components, which adds to the complexity of the phase behaviour. Now consider the impact of adding one component to the ethane, say n-heptane (C7H.,g). We are now discussing a binary (two component) mixture, and will concentrate on the pressure-temperature phase diagram. [Pg.99]

The example of a binary mixture is used to demonstrate the increased complexity of the phase diagram through the introduction of a second component in the system. Typical reservoir fluids contain hundreds of components, which makes the laboratory measurement or mathematical prediction of the phase behaviour more complex still. However, the principles established above will be useful in understanding the differences in phase behaviour for the main types of hydrocarbon identified. [Pg.101]

A volatile oil contains a relatively large fraction of lighter and intermediate oomponents which vaporise easily. With a small drop in pressure below the bubble point, the relative amount of liquid to gas in the two-phase mixture drops rapidly, as shown in the phase diagram by the wide spacing of the iso-vol lines. At reservoir pressures below the bubble point, gas is released In the reservoir, and Is known as solution gas, since above the bubble point this gas was contained in solution. Some of this liberated gas will flow towards the producing wells, while some will remain in the reservoir and migrate towards the crest of the structure to form a secondary gas cap. [Pg.104]

When oil and gas are produced simultaneously into a separator a certain amount (mass fraction) of each component (e.g. butane) will be in the vapour phase and the rest in the liquid phase. This can be described using phase diagrams (such as those described in section 4.2) which describe the behaviour of multi-component mixtures at various temperatures and pressures. However to determine how much of each component goes into the gas or liquid phase the equilibrium constants (or equilibrium vapour liquid ratios) K must be known. [Pg.243]

Phase transitions in binary systems, nomially measured at constant pressure and composition, usually do not take place entirely at a single temperature, but rather extend over a finite but nonzero temperature range. Figure A2.5.3 shows a temperature-mole fraction T, x) phase diagram for one of the simplest of such examples, vaporization of an ideal liquid mixture to an ideal gas mixture, all at a fixed pressure, (e.g. 1 atm). Because there is an additional composition variable, the sample path shown in tlie figure is not only at constant pressure, but also at a constant total mole fraction, here chosen to be v = 1/2. [Pg.613]

Figure A2.5.3. Typical liquid-gas phase diagram (temperature T versus mole fraction v at constant pressure) for a two-component system in which both the liquid and the gas are ideal mixtures. Note the extent of the two-phase liquid-gas region. The dashed vertical line is the direction x = 1/2) along which the fiinctions in figure A2.5.5 are detemiined. Figure A2.5.3. Typical liquid-gas phase diagram (temperature T versus mole fraction v at constant pressure) for a two-component system in which both the liquid and the gas are ideal mixtures. Note the extent of the two-phase liquid-gas region. The dashed vertical line is the direction x = 1/2) along which the fiinctions in figure A2.5.5 are detemiined.
Figure A2.5.5. Phase diagrams for two-eomponent systems with deviations from ideal behaviour (temperature T versus mole fraetion v at eonstant pressure). Liquid-gas phase diagrams with maximum (a) and minimum (b) boiling mixtures (azeotropes), (e) Liquid-liquid phase separation, with a eoexistenee eurve and a eritieal point. Figure A2.5.5. Phase diagrams for two-eomponent systems with deviations from ideal behaviour (temperature T versus mole fraetion v at eonstant pressure). Liquid-gas phase diagrams with maximum (a) and minimum (b) boiling mixtures (azeotropes), (e) Liquid-liquid phase separation, with a eoexistenee eurve and a eritieal point.
Figure A2.5.11. Typical pressure-temperature phase diagrams for a two-component fluid system. The fiill curves are vapour pressure lines for the pure fluids, ending at critical points. The dotted curves are critical lines, while the dashed curves are tliree-phase lines. The dashed horizontal lines are not part of the phase diagram, but indicate constant-pressure paths for the T, x) diagrams in figure A2.5.12. All but the type VI diagrams are predicted by the van der Waals equation for binary mixtures. Adapted from figures in [3]. Figure A2.5.11. Typical pressure-temperature phase diagrams for a two-component fluid system. The fiill curves are vapour pressure lines for the pure fluids, ending at critical points. The dotted curves are critical lines, while the dashed curves are tliree-phase lines. The dashed horizontal lines are not part of the phase diagram, but indicate constant-pressure paths for the T, x) diagrams in figure A2.5.12. All but the type VI diagrams are predicted by the van der Waals equation for binary mixtures. Adapted from figures in [3].
Figure A2.5.13. Global phase diagram for a van der Waals binary mixture for whieh The... Figure A2.5.13. Global phase diagram for a van der Waals binary mixture for whieh The...
Few if any binary mixtures are exactly syimnetrical around v = 1/2, and phase diagrams like that sketched in figure A2.5.5(c) are typicd. In particular one can write for mixtures of molecules of different size (different molar volumes and F°g) the approxunate equation... [Pg.629]

Figure A2.5.30. Left-hand side Eight hypothetical phase diagrams (A through H) for ternary mixtures of d-and /-enantiomers with an optically inactive third component. Note the syimnetry about a line corresponding to a racemic mixture. Right-hand side Four T, x diagrams ((a) tlirough (d)) for pseudobinary mixtures of a racemic mixture of enantiomers with an optically inactive third component. Reproduced from [37] 1984 Phase Transitions and Critical Phenomena ed C Domb and J Lebowitz, vol 9, eh 2, Knobler C M and Scott R L Multicritical points in fluid mixtures. Experimental studies pp 213-14, (Copyright 1984) by pennission of the publisher Academic Press. Figure A2.5.30. Left-hand side Eight hypothetical phase diagrams (A through H) for ternary mixtures of d-and /-enantiomers with an optically inactive third component. Note the syimnetry about a line corresponding to a racemic mixture. Right-hand side Four T, x diagrams ((a) tlirough (d)) for pseudobinary mixtures of a racemic mixture of enantiomers with an optically inactive third component. Reproduced from [37] 1984 Phase Transitions and Critical Phenomena ed C Domb and J Lebowitz, vol 9, eh 2, Knobler C M and Scott R L Multicritical points in fluid mixtures. Experimental studies pp 213-14, (Copyright 1984) by pennission of the publisher Academic Press.
While the phase rule requires tliree components for an unsymmetrical tricritical point, theory can reduce this requirement to two components with a continuous variation of the interaction parameters. Lindli et al (1984) calculated a phase diagram from the van der Waals equation for binary mixtures and found (in accord with figure A2.5.13 that a tricritical point occurred at sufficiently large values of the parameter (a measure of the difference between the two components). [Pg.659]

One can effectively reduce the tliree components to two with quasibinary mixtures in which the second component is a mixture of very similar higher hydrocarbons. Figure A2.5.31 shows a phase diagram [40] calculated from a generalized van der Waals equation for mixtures of ethane n = 2) with nomial hydrocarbons of different carbon number n.2 (treated as continuous). It is evident that, for some values of the parameter n, those to the left of the tricritical point at = 16.48, all that will be observed with increasing... [Pg.659]

Figure A2.5.31. Calculated TIT, 0 2 phase diagram in the vicmity of the tricritical point for binary mixtures of ethane n = 2) witii a higher hydrocarbon of contmuous n. The system is in a sealed tube at fixed tricritical density and composition. The tricritical point is at the confluence of the four lines. Because of the fixing of the density and the composition, the system does not pass tiirough critical end points if the critical end-point lines were shown, the three-phase region would be larger. An experiment increasing the temperature in a closed tube would be represented by a vertical line on this diagram. Reproduced from [40], figure 8, by pennission of the American Institute of Physics. Figure A2.5.31. Calculated TIT, 0 2 phase diagram in the vicmity of the tricritical point for binary mixtures of ethane n = 2) witii a higher hydrocarbon of contmuous n. The system is in a sealed tube at fixed tricritical density and composition. The tricritical point is at the confluence of the four lines. Because of the fixing of the density and the composition, the system does not pass tiirough critical end points if the critical end-point lines were shown, the three-phase region would be larger. An experiment increasing the temperature in a closed tube would be represented by a vertical line on this diagram. Reproduced from [40], figure 8, by pennission of the American Institute of Physics.
Figure A3.3.2 A schematic phase diagram for a typical binary mixture showmg stable, unstable and metastable regions according to a van der Waals mean field description. The coexistence curve (outer curve) and the spinodal curve (iimer curve) meet at the (upper) critical pomt. A critical quench corresponds to a sudden decrease in temperature along a constant order parameter (concentration) path passing through the critical point. Other constant order parameter paths ending within tire coexistence curve are called off-critical quenches. Figure A3.3.2 A schematic phase diagram for a typical binary mixture showmg stable, unstable and metastable regions according to a van der Waals mean field description. The coexistence curve (outer curve) and the spinodal curve (iimer curve) meet at the (upper) critical pomt. A critical quench corresponds to a sudden decrease in temperature along a constant order parameter (concentration) path passing through the critical point. Other constant order parameter paths ending within tire coexistence curve are called off-critical quenches.
Figure C2.1.10. (a) Gibbs energy of mixing as a function of the volume fraction of polymer A for a symmetric binary polymer mixture = Ag = N. The curves are obtained from equation (C2.1.9 ). (b) Phase diagram of a symmetric polymer mixture = Ag = A. The full curve is the binodal and delimits the homogeneous region from that of the two-phase stmcture. The broken curve is the spinodal. Figure C2.1.10. (a) Gibbs energy of mixing as a function of the volume fraction of polymer A for a symmetric binary polymer mixture = Ag = N. The curves are obtained from equation (C2.1.9 ). (b) Phase diagram of a symmetric polymer mixture = Ag = A. The full curve is the binodal and delimits the homogeneous region from that of the two-phase stmcture. The broken curve is the spinodal.
Figure C2.6.10. Phase diagram of colloid-polymer mixtures polymer coil volume fraction vs particle... Figure C2.6.10. Phase diagram of colloid-polymer mixtures polymer coil volume fraction vs particle...
Imhof A and Dhont J K G 1995 Experimental phase diagram of a binary oolloidal hard-sphere mixture with a large size ratio Phys. Rev. Lett. 75 1662-5... [Pg.2695]

In other cases, association has been demonstrated by means of phase diagrams of binary mixtures (158). [Pg.357]

Fig. 4. Phase diagram for Hquid and soHd mixtures of He and He where CP is the critical point (—), Hquid ( ndashrule ), soHd. Fig. 4. Phase diagram for Hquid and soHd mixtures of He and He where CP is the critical point (—), Hquid ( ndashrule ), soHd.
When a steel is cooled sufficiendy rapidly from the austenite region to a low (eg, 25°C) temperature, the austenite decomposes into a nonequilihrium phase not shown on the phase diagram. This phase, called martensite, is body-centered tetragonal. It is the hardest form of steel, and its formation is critical in hardening. To form martensite, the austenite must be cooled sufficiently rapidly to prevent the austenite from first decomposing to the softer stmeture of a mixture of ferrite and carbide. Martensite begins to form upon reaching a temperature called the martensite start, Af, and is completed at a lower temperature, the martensite finish, Mj, These temperatures depend on the carbon and alloy content of the particular steel. [Pg.211]

Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value. Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value.
Carbon disulfide is completely miscible with many hydrocarbons, alcohols, and chlorinated hydrocarbons (9,13). Phosphoms (14) and sulfur are very soluble in carbon disulfide. Sulfur reaches a maximum solubiUty of 63% S at the 60°C atmospheric boiling point of the solution (15). SolubiUty data for carbon disulfide in Hquid sulfur at a CS2 partial pressure of 101 kPa (1 atm) and a phase diagram for the sulfur—carbon disulfide system have been published (16). Vapor—Hquid equiHbrium and freezing point data ate available for several binary mixtures containing carbon disulfide (9). [Pg.27]


See other pages where Mixture phase diagram is mentioned: [Pg.235]    [Pg.239]    [Pg.522]    [Pg.217]    [Pg.306]    [Pg.235]    [Pg.239]    [Pg.522]    [Pg.217]    [Pg.306]    [Pg.170]    [Pg.517]    [Pg.615]    [Pg.616]    [Pg.624]    [Pg.659]    [Pg.659]    [Pg.2377]    [Pg.2377]    [Pg.346]    [Pg.9]    [Pg.67]    [Pg.408]    [Pg.409]    [Pg.446]    [Pg.459]    [Pg.151]    [Pg.179]    [Pg.520]    [Pg.117]    [Pg.218]   
See also in sourсe #XX -- [ Pg.76 , Pg.77 ]




SEARCH



Benzene/toluene mixtures, phase diagram

Binary hard sphere mixtures phase diagram

Binary liquid mixture phase diagrams

High-pressure Phase Diagrams and Critical Properties of Fluid Mixtures

Mixture diagram

Phase Diagrams for Binary Mixtures

Phase Diagrams for Supercritical Fluid-Solute Mixtures

Phase Diagrams for Ternary Mixtures

Phase Diagrams of Nonideal Mixtures

Phase Diagrams of Three-Component Mixtures

Phase diagrams experimental colloid-polymer mixtures

Phase diagrams methanol mixtures

Phase diagrams of binary mixture

Phase diagrams of mixtures

Phase diagrams, solid-fluid equilibrium mixtures

Poly phase diagram of binary mixture with

© 2024 chempedia.info