Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pd -catalyzed cross-coupling

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

The cis thioboration of terminal alkynes with 9-(arylthio)-9-BBN is catalyzed by Pd(Pli3P)4 in the presence of styrene. The product 136 is converted into the vinyl sulfides 137 and 138 by the treatment with MeOH or by Pd-catalyzed cross-coupling with aryl or alkenyl halides using K3PO4 in DMF[68]. No thioboration takes place with internal alkynes. [Pg.488]

Scheme 5.2-20 Pd-catalyzed cross-coupling of organozinc compounds (Negishi cross-coupling)... Scheme 5.2-20 Pd-catalyzed cross-coupling of organozinc compounds (Negishi cross-coupling)...
Microwave and fluorous technologies have been combined in the solution phase parallel synthesis of 3-aminoimidazo[l,2-a]pyridines and -pyrazines [63]. The three-component condensation of a perfluorooctane-sulfonyl (Rfs = CgFiy) substituted benzaldehyde by microwave irradiation in a single-mode instrument at 150 °C for 10 min in CH2CI2 - MeOH in the presence of Sc(OTf)3 gave the imidazo-annulated heterocycles that could be purified by fluorous solid phase extraction (Scheme 9). Subsequent Pd-catalyzed cross-coupling reactions of the fluorous sulfonates with arylboronic acids or thiols gave biaryls or aryl sulfides, respectively, albeit it in relatively low yields. [Pg.40]

Radical-mediated silyldesulfonylation of various vinyl and (a-fluoro)vinyl sulfones 21 with (TMSlsSiH (Reaction 25) provide access to vinyl and (a-fluoro)vinyl silanes 22. These reactions presumably occur via a radical addition of (TMSlsSi radical followed by /)-scission with the ejection of PhS02 radical. Hydrogen abstraction from (TMSlsSiH by PhS02 radical completes the cycle of these chain reactions. Such silyldesulfonylation provides a flexible alternative to the hydrosilylation of alkynes with (TMSlsSiH (see below). On oxidative treatment with hydrogen peroxide in basic aqueous solution, compound 22 undergoes Pd-catalyzed cross-couplings with aryl halides. [Pg.131]

Pd-catalyzed cross-coupling of aryl iodide 38 and terminal phenylacetylene 39 gave a dimer (e. g. 40) containing both trimethylsilyl-protected acetylene and aryltriazene moieties. [Pg.93]

Palladium-Catalyzed Arylation of Enolates. Very substantial progress has been made in the use of Pd-catalyzed cross coupling for arylation of enolates and enolate equivalents. This reaction provides an important method for arylation of enolates, which is normally a difficult transformation to accomplish.171 A number of phosphine ligands have been found to promote these reactions. Bulky trialkyl phosphines such as /n. v-(/-butyl)phosphinc with a catalytic amount of Pd(OAc)2 results in phenylation of the enolates of aromatic ketones and diethyl malonate.172... [Pg.728]

In contrast to the transition metals, where there is often a change in oxidation level at the metal during the reaction, there is usually no change in oxidation level for boron, silicon, and tin compounds. The synthetically important reactions of these three groups of compounds involve transfer of a carbon substituent with one (radical equivalent) or two (carbanion equivalent) electrons to a reactive carbon center. Here we focus on the nonradical reactions and deal with radical reactions in Chapter 10. We have already introduced one important aspect of boron and tin chemistry in the transmetallation reactions involved in Pd-catalyzed cross-coupling reactions, discussed... [Pg.783]

An unusual Pd-catalyzed cross-coupling reaction of a diindium reagent obtained from 3-bromo-l-iodopropene 6/1-239 was recently described by Hirashita and coworkers [118] to afford homoallylic alcohols 6/1-240 (Scheme 6/1.62). [Pg.398]

Zhao and Larock have described the synthesis of carbazoles, indoles, and dibenzofurans 118 via a Ic type cyclization that follows a sequence of Pd-catalyzed cross-coupling of alkynes and aryl iodides 116, then nitrogen-directed palladium migration to an arylpalladium intermediate 117 that undergoes an intramolecular Mizoroki-Heck ring closure <06JOC5340>. [Pg.153]

A general method for the Pd-catalyzed cross-couplings of alkyl- and arylzinc chlorides with aryl, heteroaryl, and vinyl chlorides was reported by Dai and Fu.420 They determined that the commercially available and air stable complex Pd(PBut3)2 catalyzed these reactions leading to the formation of an sp2)C - sp2)C bond (Scheme 164). Remarkably, bulky biaryls with two, three, or even four 0/7/fo-substituents (e.g., 323) were obtained in very high yields (76-96%). [Pg.410]

In the Pd-catalyzed cross-coupling reactions of acylzirconocene chlorides with allylic halides and/or acetates (Section 5.4.4.4), the isolation of the expected p,y-unsaturated ketone is hampered by the formation of the a, P-un saturated ketone, which arises from isomerization of the p,y-double bond. This undesirable formation of the unsaturated ketone can be avoided by the use of a Cu(I) catalyst instead of a Pd catalyst [35], Most Cu(I) salts, with the exception of CuBr - SMe2, can be used as efficient catalysts Thus the reactions of acylzirconocene chlorides with allyl compounds (Table 5 8 and Scheme 5 30) or propargyl halides (Table 5.9) in the presence of a catalytic amount (10 mol%) of Cu(I) in DMF or THF are completed within 1 h at 0°C to give ffie acyl--allyl or acyl-allenyl coupled products, respectively, in good yields. ill... [Pg.170]

The Pd-catalyzed cross coupling reaction of 3-stannylated pyrroles is also known. Muchowski has thus prepared and utilized 96 to effect Stille couplings leading to 97 [59]. [Pg.50]

The Stille Pd-catalyzed cross coupling has been employed in the synthesis of modified porphyrins [54, 55, 82]. For example, the union of dOialoporphyrins with tri-n-butylvinylstannane affords protoporphyrin IX in excellent yield [82]. [Pg.52]

The medicinal importance of 2-aryltryptamines led Chu and co-workers to develop an efficient route to these compounds (130) via a Pd-catalyzed cross-coupling of protected 2-bromotryptamines 128 with arylboronic acids 129 [137]. Several Suzuki conditions were explored and only a partial listing of the arylboronic acids is shown here. In addition, boronic acids derived from naphthalene, isoquinoline, and indole were successfully coupled with 128. The C-2 bromination of the protected tryptamines was conveniently performed using pyridinium hydrobromide perbromide (70-100%). 2-Phenyl-5-(and 7-)azaindoles have been prepared via a Suzuki coupling of the corresponding 2-iodoazaindoles [19]. [Pg.101]

Indolyltriflates have been used in Suzuki couplings by Mdrour [138, 139]. Thus, the readily available l-(phenylsulfonyl)indol-2-yl triflate (131) smoothly couples with arylboronic acids in 65-91% yield. Similarly, Pd-catalyzed cross-coupling of phenylboronic acid with l-benzyl-2-carbomethoxyindol-3-yl triflate affords the 3-phenyl derivative (62% yield) [139]. [Pg.102]

An application of Stille couplings to the solid phase using a traceless A-glycerol linker with 2-stannylindoles has been developed [177]. Only a few examples of the use of 3-stannylindoles in Stille reactions have been described. Ortar and co-workers prepared 169 and 170 and effected Pd-catalyzed cross coupling reactions with several aryl, heteroaryl, and vinyl substrates (bromides, iodides, triflates) to give the expected products 171 in high yields [178]. Enol triflates behave exceptionally well under the Ortar conditions, e.g., 172 to 173. [Pg.110]

Doi and Mori made excellent use of dihydroindole triflate 189 in Pd-catalyzed cross-coupling reactions. This compound was discussed earlier in the Suzuki section, and it also undergoes Stille couplings as illustrated below [140]. A final dehydrogenation completes the sequence to indoles. [Pg.114]

Miki effected Pd-catalyzed cross-coupling between dimethyl 7-bromoindole-2,3-dicarboxylate and both tributylvinyltin and tributyl-1-ethoxyvinyltin to yield the expected 7-vinylindoles [197]. Hydrolysis of the crude reaction product from using tributyl-1-ethoxyvinyltin gave the 7-acetylindole. Sakamoto used dibromide 192, which was prepared by acylation of 7-bromoindole, in a very concise and efficient synthesis of hippadine [36]. The overall yield from commercial materials is 39%. Somewhat earlier, Grigg employed the same strategy to craft hippadine from the diiodoindoline version of 192 using similar cyclization reaction conditions ((Me3Sn)2/Pd(OAc)2), followed by DDQ oxidation (90%) [198]. [Pg.115]

Na2CC>3), 25 °C, 24 h. Larock extended his work in several ways [302-305], particularly with regard to Pd-catalyzed cross-coupling of o-allylic and o-vinylic anilides with vinyl halides and triflates to produce 2-vinylindoles [303-305], an example of which is shown [305]. The related "Larock indole synthesis" is discussed separately in the next section. [Pg.136]


See other pages where Pd -catalyzed cross-coupling is mentioned: [Pg.227]    [Pg.228]    [Pg.253]    [Pg.313]    [Pg.109]    [Pg.1218]    [Pg.576]    [Pg.307]    [Pg.340]    [Pg.343]    [Pg.196]    [Pg.235]    [Pg.453]    [Pg.117]    [Pg.656]    [Pg.17]    [Pg.535]    [Pg.8]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.90]    [Pg.106]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.150]    [Pg.197]   
See also in sourсe #XX -- [ Pg.196 ]

See also in sourсe #XX -- [ Pg.547 ]




SEARCH



Pd -catalyzed cross-coupling with

Pd coupling

Pd cross-coupling

Pd-Catalyzed Fluoride-Free Cross Coupling of Alkenylsilanes and Germanes

Pd-catalyzed Suzuki cross-coupling

Pd-catalyzed cross-coupling reaction

Pd/Cu-catalyzed cross-coupling

Reductive Elimination and Pd-Catalyzed Cross-Coupling

ZACA-Pd-Catalyzed Cross-Coupling Sequential Processes for the Synthesis of Deoxypolypropionates and Related Compounds

© 2024 chempedia.info