Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivation thermodynamics

In the presence of oxygen and water the oxides of most metals are more thermodynamically stable than the elemental form of the metal. Therefore, with the exception of gold, the only metal which is thermodynamically stable in the presence of oxygen, there is always a thermodynamic driving force for corrosion of metals. Most metals, however, exhibit some tendency to passivate, ie, to form a protective oxide film on the surface which retards further corrosion. [Pg.275]

Eig. 2. The thermodynamic regions of corrosion, immunity, and passivation of iron in an iron—water system assuming passivation by a film of Ee202 (H)-... [Pg.276]

Pourbaix diagrams are only thermodynamic predictions and yield no information about the kinetics of the reactions involved nor are the influences of other ionic species which may be present in the solution included. Complexing ions, particularly haUdes, can interfere with passivation and can influence... [Pg.276]

Passivity—a condition of a metal or alloy in which the material is normally thermodynamically unstable in a given electrolytic solution but remains visibly unchanged for a prolonged period. The electrode potential of a passive metal is always appreciably more noble than its potential in the active state. [Pg.49]

From a thermodynamic and kinetic perspective, there are only three types of membrane transport processes passive diffusion, faeilitated diffusion, and active transport. To be thoroughly appreciated, membrane transport phenomena must be considered in terms of thermodynamics. Some of the important kinetic considerations also will be discussed. [Pg.297]

Passive diffusion is the simplest transport process. In passive diffusion, the transported species moves across the membrane in the thermodynamically favored direction without the help of any specific transport system/molecule. For an uncharged molecule, passive diffusion is an entropic process, in which movement of molecules across the membrane proceeds until the concentration of the substance on both sides of the membrane is the same. For an uncharged molecule, the free energy difference between side 1 and side 2 of a membrane (Figure 10.1) is given by... [Pg.297]

It should be noted that Fig. 1.15 (top) is based entirely on thermodynamic data and is therefore correctly described as an equilibrium diagram, since it shows the phases (nature and activity) that exist at equilibrium. However, the concepts implicit in the terms corrosion, immunity and passivity lie outside the realm of thermodynamics, and, for example, passivity involves both thermodynamic and kinetic concepts it follows that Fig. 1.15 (bottom) cannot be regarded as a true equilibrium diagram, although it is based on one that has been constructed entirely from thermodynamic data. [Pg.67]

The Af-HjO diagrams present the equilibria at various pHs and potentials between the metal, metal ions and solid oxides and hydroxides for systems in which the only reactants are metal, water, and hydrogen and hydroxyl ions a situation that is extremely unlikely to prevail in real solutions that usually contain a variety of electrolytes and non-electrolytes. Thus a solution of pH 1 may be prepared from either hydrochloric, sulphuric, nitric or perchloric acids, and in each case a different anion will be introduced into the solution with the consequent possibility of the formation of species other than those predicted in the Af-HjO system. In general, anions that form soluble complexes will tend to extend the zones of corrosion, whereas anions that form insoluble compounds will tend to extend the zone of passivity. However, provided the relevant thermodynamic data are aveiil-able, the effect of these anions can be incorporated into the diagram, and diagrams of the type Af-HjO-A" are available in Cebelcor reports and in the published literature. [Pg.68]

Although thermodynamics can predict the region of pH and potential in which solid oxides, hydroxides and other compounds are stable, it can provide no other information thus on the basis of these considerations alone a metal in the passive region should be completely converted to a solid compound by reacting with water with a consequent loss of properties. [Pg.72]

The fact that oxides can exist as metastable phases is illustrated by the Ni-HjO diagram (Fig. 1.18) in which the curves for the various oxides of nickel have been extrapolated into the acid region of Ni stability, and this diagram emphasises the fact that nickel can be passivated outside the region of thermodynamic stability of the oxides". [Pg.73]

As with all determinations of thermodynamic stability, we comihehce by defining all stable phases possible, and their standard, chemical, potentials. For inost, metals there are many such phases, including oxides, hydroxides and dissolved ions. For brevity, here, only the minimum number of phases is Considered. The siriiplest system is a metal, ilf, which can oxidise lo form a stable dissolved pro,duct, (qorrpsipn), or to form a stable oxide MO (passivation), lit aqueous environments thfbe equilibria Can thereby be... [Pg.133]

Certainly a thermodynamically stable oxide layer is more likely to generate passivity. However, the existence of the metastable passive state implies that an oxide him may (and in many cases does) still form in solutions in which the oxides are very soluble. This occurs for example, on nickel, aluminium and stainless steel, although the passive corrosion rate in some systems can be quite high. What is required for passivity is the rapid formation of the oxide him and its slow dissolution, or at least the slow dissolution of metal ions through the him. The potential must, of course be high enough for oxide formation to be thermodynamically possible. With these criteria, it is easily understood that a low passive current density requires a low conductivity of ions (but not necessarily of electrons) within the oxide. [Pg.135]

The form of Figure 1.43 is common among many metals in solutions of acidic to neutral pH of non-complexing anions. Some metals such as aluminium and zinc, whose oxides are amphoteric, lose their passivity in alkaline solutions, a feature reflected in the potential/pH diagram. This is likely to arise from the rapid rate at which the oxide is attacked by the solution, rather than from direct attack on the metal, although at low potential, active dissolution is predicted thermodynamically The reader is referred to the classical work of Pourbaix for a full treatment of potential/pH diagrams of pure metals in equilibrium with water. [Pg.135]

The effects of concentration, velocity and temperature are complex and it will become evident that these factors can frequently outweigh the thermodynamic and kinetic considerations detailed in Section 1.4. Thus it has been demonstrated in Chapter 1 that an increase in hydrogen ion concentration will raise the redox potential of the aqueous solution with a consequent increase in rate. On the other hand, an increase in the rate of the cathodic process may cause a decrease in rate when the metal shows an active/passive transition. However, in complex environmental situations these considerations do not always apply, particularly when the metals are subjected to certain conditions of high velocity and temperature. [Pg.307]

The corrosion rate of many important metals and alloys is controlled by the formation of a passive film, and the thermodynamics and kinetics of their formation and breakdown are dealt with in Section 1.2. [Pg.310]

The values in Table 2.16 show how the potentials obtained under service conditions differ from the standard electrode potentials which are frequently calculated from thermodynamic data. Thus aluminium, which is normally coated with an oxide film, has a more noble value than the equilibrium potential 3 + / = — 1-66V vs. S.H.E. and similar considerations apply to passive stainless steel (see Chapter 21). [Pg.368]

In the case of CaCl2 and NaCl, the order corresponds with the corrosion behaviour expected from cathodic polarisation curves . The order of aggressiveness of chlorides can also be explained on the basis of redox potentials of the melts, calculated on thermodynamic grounds from the free energies of formation of the appropriate oxides and chlorides . The order of aggressiveness of nitrates is complicated by passivity effects , while that of alkalis in contact with air is... [Pg.442]

The standard electrode trotential, Ep, 2+ Pb = —Q.126V . shows that lead is thermodynamically unstable in acid solutions but stable in neutral. solutions. The exchange current for the hydrogen evolution reaction on lead is very small (-10 - 10"" Acm ), but control of corrosion is usually due to mechanical passivation of the local anodes of the corrosion cells as the majority of lead salts are insoluble and frequently form protective films or coatings. [Pg.724]

The outstanding characteristics of the noble metals are their exceptional resistance to corrosive attack by a wide range of liquid and gaseous substances, and their stability at high temperatures under conditions where base metals would be rapidly oxidised. This resistance to chemical and oxidative attack arises principally from the Inherently high thermodynamic stability of the noble metals, but in aqueous media under oxidising or anodic conditions a very thin film of adsorbed oxygen or oxide may be formed which can contribute to their corrosion resistance. An exception to this rule, however, is the passivation of silver and silver alloys in hydrochloric or hydrobromic acids by the formation of relatively thick halide films. [Pg.923]

Titanium, which was in commercial production in 1950, is thermodynamically a very reactive metal (machining swarf can be ignited in a similar fashion to that of magnesium ribbon) but this is offset by its strong tendency to passivate i.e. to form a highly stable protective oxide film. [Pg.165]

Before considering the principles of this method, it is useful to distinguish between anodic protection and cathodic protection (when the latter is produced by an external e.m.f.). Both these techniques, which may be used to reduce the corrosion of metals in contact with electrolytes, depend upon the electrochemical mechanisms that result from changing the potential of a metal. The appropriate potential-pH diagram for the Fe-H20 system (Section 1.4) indicates the magnitude and direction of the changes in the potential of iron immersed in water (pH about 7) necessary to make it either passive or immune in the former case the stability of the metal depends on the formation of a protective film of metal oxide (passivation), whereas in the latter the metal itself is thermodynamically stable and egress of metal ions from the lattice into the solution is thus prevented. [Pg.261]


See other pages where Passivation thermodynamics is mentioned: [Pg.359]    [Pg.552]    [Pg.359]    [Pg.552]    [Pg.433]    [Pg.480]    [Pg.276]    [Pg.2428]    [Pg.41]    [Pg.40]    [Pg.121]    [Pg.298]    [Pg.29]    [Pg.58]    [Pg.59]    [Pg.69]    [Pg.73]    [Pg.100]    [Pg.118]    [Pg.122]    [Pg.128]    [Pg.132]    [Pg.133]    [Pg.134]    [Pg.134]    [Pg.135]    [Pg.179]    [Pg.638]    [Pg.766]    [Pg.894]    [Pg.928]    [Pg.203]   
See also in sourсe #XX -- [ Pg.151 , Pg.152 , Pg.152 ]




SEARCH



Chemical equilibria thermodynamics passivation

Transition, thermodynamics active-passive

© 2024 chempedia.info