Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition function theory

There is an inunediate coimection to the collision theory of bimolecular reactions. Introducing internal partition functions excluding the (separable) degrees of freedom for overall translation. [Pg.780]

Finally, the generalization of the partition function q m transition state theory (equation (A3.4.96)) is given by... [Pg.783]

These equations lead to fomis for the thermal rate constants that are perfectly similar to transition state theory, although the computations of the partition functions are different in detail. As described in figrne A3.4.7 various levels of the theory can be derived by successive approximations in this general state-selected fomr of the transition state theory in the framework of the statistical adiabatic chaimel model. We refer to the literature cited in the diagram for details. [Pg.783]

This is connnonly known as the transition state theory approximation to the rate constant. Note that all one needs to do to evaluate (A3.11.187) is to detennine the partition function of the reagents and transition state, which is a problem in statistical mechanics rather than dynamics. This makes transition state theory a very usefiil approach for many applications. However, what is left out are two potentially important effects, tiiimelling and barrier recrossing, bodi of which lead to CRTs that differ from the sum of step frmctions assumed in (A3.11.1831. [Pg.993]

Mciny of the theories used in molecular modelling involve multiple integrals. Examples include tire two-electron integrals formd in Hartree-Fock theory, and the integral over the piriitii >ns and momenta used to define the partition function, Q. In fact, most of the multiple integrals that have to be evaluated are double integrals. [Pg.39]

Whereas this two-parameter equation states the same conclusion as the van der Waals equation, this derivation extends the theory beyond just PVT behavior. Because the partition function, can also be used to derive aH the thermodynamic functions, the functional form, E, can be changed to describe this data as weH. Corresponding states equations are typicaHy written with respect to temperature and pressure because of the ambiguities of measuring volume at the critical point. [Pg.239]

MaxweU-Boltzmaim particles are distinguishable, and a partition function, or distribution, of these particles can be derived from classical considerations. Real systems exist in which individual particles ate indistinguishable. Eor example, individual electrons in a soHd metal do not maintain positional proximity to specific atoms. These electrons obey Eermi-Ditac statistics (133). In contrast, the quantum effects observed for most normal gases can be correlated with Bose-Einstein statistics (117). The approach to statistical thermodynamics described thus far is referred to as wave mechanics. An equivalent quantum theory is referred to as matrix mechanics (134—136). [Pg.248]

Free energy calculations rely on the following thermodynamic perturbation theory [6-8]. Consider a system A described by the energy function = 17 + T. 17 = 17 (r ) is the potential energy, which depends on the coordinates = (Fi, r, , r ), and T is the kinetic energy, which (in a Cartesian coordinate system) depends on the velocities v. For concreteness, the system could be made up of a biomolecule in solution. We limit ourselves (mostly) to a classical mechanical description for simplicity and reasons of space. In the canonical thermodynamic ensemble (constant N, volume V, temperature T), the classical partition function Z is proportional to the configurational integral Q, which in a Cartesian coordinate system is... [Pg.172]

Now we make the usual assumption in nonadiabatic transition theory that non-adiabaticity is essential only in the vicinity of the crossing point where e(Qc) = 0- Therefore, if the trajectory does not cross the dividing surface Q = Qc, its contribution to the path integral is to a good accuracy described by adiabatic approximation, i.e., e = ad Hence the real part of partition function, Zq is the same as in the adiabatic approximation. Then the rate constant may be written as... [Pg.137]

The reader who is less familiar with the theory of grand partition functions may directly proceed to Eqs. 12a and 13. The physical basis of these formulas and the significance of the quantities CK% will then become apparent in the subsequent paragraph is the vapor pressure (or fugacity) of solute K and y i is the probability of finding a K molecule in a cavity of type i. [Pg.12]

The theory introduced by Lennard-Jones and Devonshire13 17 for the study of liquids provides a powerful method for the quantitative evaluation of the partition function of a solute molecule within its cavity.51 Because the application of this method to the present problem has been described in detail,62 we shall restrict ourselves to its most essential features. [Pg.24]

Again, therefore, all thermodynamic properties of a system in quantum statistics can be derived from a knowledge of the partition function, and since this is the trace of an operator, we can choose any convenient representation in which to compute it. The most fruitful application of this method is probably to the theory of imperfect gases, and is well covered in the standard reference works.23... [Pg.472]

In the following, the MO applications will be demonstrated with two selected equilibrium reactions, most important in radical chemistry disproportionation and dimerization. The examples presented will concern MO approaches of different levels of sophistication ab initio calculations with the evaluation of partition functions, semiempirical treatments, and simple procedures employing the HMO method or perturbation theory. [Pg.363]

Figure 10. Arrhenius plot of the thermal rate constants for the 2D model system. Circles-full quantum results. Thick solid (dashed) curve present nonadiabatic transition state theory by using the seam surface [the minimum energy crossing point (MECP)] approximation. Thin solid and dashed curves are the same as the thick ones except that the classical partition functions are used. Taken from Ref. [27]. Figure 10. Arrhenius plot of the thermal rate constants for the 2D model system. Circles-full quantum results. Thick solid (dashed) curve present nonadiabatic transition state theory by using the seam surface [the minimum energy crossing point (MECP)] approximation. Thin solid and dashed curves are the same as the thick ones except that the classical partition functions are used. Taken from Ref. [27].
To understand how collision theory has been derived, we need to know the velocity distribution of molecules at a given temperature, as it is given by the Maxwell-Boltzmann distribution. To use transition state theory we need the partition functions that follow from the Boltzmann distribution. Hence, we must devote a section of this chapter to statistical thermodynamics. [Pg.80]

Because the frequency of a weakly bonded vibrating system is relatively small, i.e. kBT hu we may approximate its partition function by the classical limit k T/hv, and arrive at the rate expression in transition state theory ... [Pg.109]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

The ratio of the quantum partition functions (Eq. (4-29)) for two different isotopes can be obtained directly through free energy perturbation (FEP) theory by perturbing the mass from the light isotope to the heavy isotope. Consequently, only one simulation of a given isotopic reaction is performed, while the ratio of the partition function, i.e., the KIE, to a different isotopic reaction, is obtained by FEP. This is conceptually and practically an entirely different approach than that used previously [23]. [Pg.94]

Wong K-Y, Gao J (2008) Systematic approach for computing zero-point energy, quantum partition function, and tunneling effect based on Kleinert s variational perturbation theory. J Chem Theory Comput 4(9) 1409-1422... [Pg.104]

Prausnitz and coworkers [91,92] developed a model which accounts for nonideal entropic effects by deriving a partition function based on a lattice model with three categories of interaction sites hydrogen bond donors, hydrogen bond acceptors, and dispersion force contact sites. A different approach was taken by Marchetti et al. [93,94] and others [95-98], who developed a mean field theory... [Pg.512]

The theories of hydration we have developed herein are built upon the potential distribution theorem viewed as a local partition function. We also show how the quasi-chemical approximations can be used to evaluate this local partition function. Our approach suggests that effective descriptions of hydration are derived by defining a proximal... [Pg.330]


See other pages where Partition function theory is mentioned: [Pg.460]    [Pg.460]    [Pg.706]    [Pg.437]    [Pg.48]    [Pg.3]    [Pg.74]    [Pg.81]    [Pg.809]    [Pg.207]    [Pg.11]    [Pg.128]    [Pg.135]    [Pg.92]    [Pg.109]    [Pg.424]    [Pg.425]    [Pg.426]    [Pg.427]    [Pg.148]    [Pg.98]    [Pg.100]    [Pg.308]    [Pg.320]    [Pg.327]   
See also in sourсe #XX -- [ Pg.13 , Pg.14 ]




SEARCH



Hydration theory partition function

Partition function in transition state theory

Partition function reaction rate theory

Partitioning partition functions

Partitioning theory

Perturbation theory partition function

Transition state theory partition function

© 2024 chempedia.info