Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition function parameters

Whereas this two-parameter equation states the same conclusion as the van der Waals equation, this derivation extends the theory beyond just PVT behavior. Because the partition function, can also be used to derive aH the thermodynamic functions, the functional form, E, can be changed to describe this data as weH. Corresponding states equations are typicaHy written with respect to temperature and pressure because of the ambiguities of measuring volume at the critical point. [Pg.239]

We now have equations for the partition functions for the ideal gas and equations for relating the partition functions to the thermodynamic properties. We are ready to derive the equations for calculating the thermodynamic properties from the molecular parameters. As an example, let us calculate Um - t/o.m for the translational motion of the ideal gas. We start with... [Pg.543]

Several relevant physical parameters can be extracted for this partition function, such as ... [Pg.88]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

In the canonical partition function of (5.1), we have for simplicity ignored combinatorial prefactors. Free energy perturbation theory [12] relies on evaluating effectively the ratio of the partition functions to obtain the free energy difference between the initial and final states corresponding to coupling parameters A = 1 and 0 (see also Chap. 2),... [Pg.172]

The first term on the right is the formula for the chemical potential of component a at density pa = na/V in an ideal gas, as would be the case if interactions between molecules were negligible, fee is Boltzmann s constant, and V is the volume of the solution. The other parameters in that ideal contribution are properties of the isolated molecule of type a, and depend on the thermodynamic state only through T. Specifically, V/A is the translational contribution to the partition function of single a molecule at temperature T in a volume V... [Pg.326]

Computer simulation and analytical methods have both been used, based on diffusion equation, partition function and scaling theory approaches. There are a number of parameters which are common to most of these theories some of these are also relevant to theories of polymer solutions, i.e. [Pg.9]

The partition function of an ensemble with m intensive parameters becomes... [Pg.484]

If Q (E) is differentiable in the ordinary sense the partition function of a generalized ensemble with m intensive parameters is the m-fold Laplace transform of the microcanonical partition function e, ... [Pg.484]

Just as in our abbreviated descriptions of the lattice and cell models, we shall not be concerned with details of the approximations required to evaluate the partition function for the cluster model, nor with ways in which the model might be improved. It is sufficient to remark that with the use of two adjustable parameters (related to the frequency of librational motion of a cluster and to the shifts of the free cluster vibrational frequencies induced by the environment) Scheraga and co-workers can fit the thermodynamic functions of the liquid rather well (see Figs. 21-24). Note that the free energy is fit best, and the heat capacity worst (recall the similar difficulty in the WR results). Of more interest to us, the cluster model predicts there are very few monomeric molecules at any temperature in the normal liquid range, that the mole fraction of hydrogen bonds decreases only slowly with temperature, from 0.47 at 273 K to 0.43 at 373 K, and that the low... [Pg.161]

Figure 6. Separation factor-particle diameter tehavior as a function of packing diameter for the pore-partitioning model. Parameters are the same as in Figure 3 with the exception of the interstitial capillary radius which was computed from the hed hydraulic radius (Equation 11 (7.) with void fraction = 0.358). Figure 6. Separation factor-particle diameter tehavior as a function of packing diameter for the pore-partitioning model. Parameters are the same as in Figure 3 with the exception of the interstitial capillary radius which was computed from the hed hydraulic radius (Equation 11 (7.) with void fraction = 0.358).

See other pages where Partition function parameters is mentioned: [Pg.77]    [Pg.81]    [Pg.107]    [Pg.473]    [Pg.415]    [Pg.126]    [Pg.56]    [Pg.62]    [Pg.406]    [Pg.139]    [Pg.91]    [Pg.112]    [Pg.4]    [Pg.127]    [Pg.92]    [Pg.93]    [Pg.93]    [Pg.97]    [Pg.102]    [Pg.115]    [Pg.124]    [Pg.362]    [Pg.378]    [Pg.236]    [Pg.442]    [Pg.483]    [Pg.484]    [Pg.194]    [Pg.144]    [Pg.39]    [Pg.39]    [Pg.122]    [Pg.158]    [Pg.38]    [Pg.72]    [Pg.282]    [Pg.77]   
See also in sourсe #XX -- [ Pg.418 , Pg.419 , Pg.420 ]




SEARCH



Functional parameter

Partitioning partition functions

© 2024 chempedia.info