Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particles ionic strength

A pair of polysaccharide molecules approaching each other in water exerts an interaction potential ( ) that is the algebraic sum of the competing attractive and repulsive forces. integrated over all pairs of molecules, is . This principle is embodied in the Deijaguin-Verwey-Landau-Overbeek (DLVO) theory of colloidal stability (Ross and Morrison, 1988). The equilibrium distance between the molecules is related to c, the volume of the hydrated particles, ionic strength, cosolute, nonsolvent additions, temperature, and shearing. [Pg.42]

It has been observed that the larger particles elute faster than the smaller ones. It has also been found that the smaller the packing diameter, the better the separation. Other factors that affect the rate of transportation through the bed are size of bed particles, ionic strength, flow velocities, and particle size of eluting particles. The method is applicable to size separation of particles between 0.02 and 1 pm, if they are rigid. [Pg.103]

Often the van der Waals attraction is balanced by electric double-layer repulsion. An important example occurs in the flocculation of aqueous colloids. A suspension of charged particles experiences both the double-layer repulsion and dispersion attraction, and the balance between these determines the ease and hence the rate with which particles aggregate. Verwey and Overbeek [44, 45] considered the case of two colloidal spheres and calculated the net potential energy versus distance curves of the type illustrated in Fig. VI-5 for the case of 0 = 25.6 mV (i.e., 0 = k.T/e at 25°C). At low ionic strength, as measured by K (see Section V-2), the double-layer repulsion is overwhelming except at very small separations, but as k is increased, a net attraction at all distances... [Pg.240]

The adhesion between two solid particles has been treated. In addition to van der Waals forces, there can be an important electrostatic contribution due to charging of the particles on separation [76]. The adhesion of hematite particles to stainless steel in aqueous media increased with increasing ionic strength, contrary to intuition for like-charged surfaces, but explainable in terms of electrical double-layer theory [77,78]. Hematite particles appear to form physical bonds with glass surfaces and chemical bonds when adhering to gelatin [79]. [Pg.454]

The conditioning reagent is used to stabilize the precipitate of BaS04. The high ionic strength and acidity, due to NaCI and HCI, prevent the formation of microcrystalline particles of BaS04, and glycerol and alcohol help stabilize the precipitate s suspension. [Pg.445]

The electrostatic repulsive forces are a function of particle kinetic energy (/ T), ionic strength, zeta potential, and separation distance. The van der Waals attractive forces are a function of the Hamaker constant and separation distance. [Pg.148]

Cross-flow-elec trofiltratiou (CF-EF) is the multifunctional separation process which combines the electrophoretic migration present in elec trofiltration with the particle diffusion and radial-migration forces present in cross-flow filtration (CFF) (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears later in this section) in order to reduce further the formation of filter cake. Cross-flow-electrofiltratiou can even eliminate the formation of filter cake entirely. This process should find application in the filtration of suspensions when there are charged particles as well as a relatively low conduc tivity in the continuous phase. Low conductivity in the continuous phase is necessary in order to minimize the amount of elec trical power necessaiy to sustain the elec tric field. Low-ionic-strength aqueous media and nonaqueous suspending media fulfill this requirement. [Pg.2008]

The factors to consider in the selection of cross-flow filtration include the cross-flow velocity, the driving pressure, the separation characteristics of the membrane (permeability and pore size), size of particulates relative to the membrane pore dimensions, and the hydrodynamic conditions within the flow module. Again, since particle-particle and particle-membrane interactions are key, broth conditioning (ionic strength, pH, etc.) may be necessary to optimize performance. [Pg.2058]

Column type Column size (mm) Particle size ( zm) Theoretical plate number Separation range (IcDa) Pore size (A) Flow rate (ml/min) Maximum pressure (kgf/cm ) Maximum temperature pH range Eluent ionic strength (M)... [Pg.213]

In the development of a SE-HPLC method the variables that may be manipulated and optimized are the column (matrix type, particle and pore size, and physical dimension), buffer system (type and ionic strength), pH, and solubility additives (e.g., organic solvents, detergents). Once a column and mobile phase system have been selected the system parameters of protein load (amount of material and volume) and flow rate should also be optimized. A beneficial approach to the development of a SE-HPLC method is to optimize the multiple variables by the use of statistical experimental design. Also, information about the physical and chemical properties such as pH or ionic strength, solubility, and especially conditions that promote aggregation can be applied to the development of a SE-HPLC assay. Typical problems encountered during the development of a SE-HPLC assay are protein insolubility and column stationary phase... [Pg.534]

Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm). Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm).
There is an extensive amount of data in the literature on the effect of many factors (e.g. temperature, monomer and surfactant concentration and types, ionic strength, reactor configuration) on the time evolution of quantities such as conversions, particle number and size, molecular weight, composition. In this section, EPM predictions are compared with the following limited but useful cross section of isothermal experimental data ... [Pg.367]

Figure 2. Particle number vs. ionic strength for the styrene data of Goodwin et al. (22.) ... Figure 2. Particle number vs. ionic strength for the styrene data of Goodwin et al. (22.) ...

See other pages where Particles ionic strength is mentioned: [Pg.189]    [Pg.242]    [Pg.1739]    [Pg.10]    [Pg.443]    [Pg.33]    [Pg.34]    [Pg.44]    [Pg.25]    [Pg.27]    [Pg.403]    [Pg.443]    [Pg.547]    [Pg.6]    [Pg.6]    [Pg.533]    [Pg.179]    [Pg.1440]    [Pg.1726]    [Pg.48]    [Pg.51]    [Pg.460]    [Pg.200]    [Pg.200]    [Pg.201]    [Pg.218]    [Pg.219]    [Pg.206]    [Pg.37]    [Pg.166]    [Pg.15]    [Pg.185]    [Pg.252]    [Pg.366]    [Pg.367]    [Pg.367]    [Pg.376]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Ionic strength

© 2024 chempedia.info