Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle size distribution growth

Wagner (1961) examined theoretically the growdr kinetics of a Gaussian particle size distribution, considering two growth mechanisms. When the process is volume diffusion controlled... [Pg.211]

At the crystallization stage, the rates of generation and growth of particles together with their residence times are all important for the formal accounting of particle numbers in each size range. Use of the mass and population balances facilitates calculation of the particle size distribution and its statistics i.e. mean particle size, etc. [Pg.264]

Manuo, L., Manna, L., Chiampo, F., Sicardi, S. and Bersano, G., 1996. Influence of mixing on the particle size distribution of an organic precipitate. Journal of Crystal Growth, 166, 1027-1034. [Pg.314]

Petanate, A.M. and Glatz, C.E., 1983. Isoelectric precipitation of soy protein. I. Factors affecting particle size distributions. II. Kinetics of protein aggregate growth and breakage. Biotechnology and Bioengineering, 25, 3049. [Pg.318]

Equations 11 and 12 are only valid if the volumetric growth rate of particles is the same in both reactors a condition which would not hold true if the conversion were high or if the temperatures differ. Graphs of these size distributions are shown in Figure 3. They are all broader than the distributions one would expect in latex produced by batch reaction. The particle size distributions shown in Figure 3 are based on the assumption that steady-state particle generation can be achieved in the CSTR systems. Consequences of transients or limit-cycle behavior will be discussed later in this paper. [Pg.5]

While the model was in general agreement with the limited experimental data published on bulk PVC particle size distribution, there is still no generally applicable theory describing particle growth and flocculation in the presences of mechanical agitation for precipitation polymerizations. [Pg.272]

There are obviously two steps involved in the preparation of crystal matter from a solution, the crystals must first form and then grow. The formation of a new solid phase either on an inert particle in the solution or in the solution itself is called nucleation. The increase in size of this nucleus with a layer-by-layer addition of solute is called crystal growth. Both nucleation and crystal growth have supersaturation as a common driving force. Unless a solution is supersaturated, crystals can neither form nor grow. The particle-size distribution of this weight, however, will depend on the relationship between the two processes of nucleation and growth. [Pg.174]

Some of the reports are as follows. Mizukoshi et al. [31] reported ultrasound assisted reduction processes of Pt(IV) ions in the presence of anionic, cationic and non-ionic surfactant. They found that radicals formed from the reaction of the surfactants with primary radicals sonolysis of water and direct thermal decomposition of surfactants during collapsing of cavities contribute to reduction of metal ions. Fujimoto et al. [32] reported metal and alloy nanoparticles of Au, Pd and ft, and Mn02 prepared by reduction method in presence of surfactant and sonication environment. They found that surfactant shows stabilization of metal particles and has impact on narrow particle size distribution during sonication process. Abbas et al. [33] carried out the effects of different operational parameters in sodium chloride sonocrystallisation, namely temperature, ultrasonic power and concentration sodium. They found that the sonocrystallization is effective method for preparation of small NaCl crystals for pharmaceutical aerosol preparation. The crystal growth then occurs in supersaturated solution. Mersmann et al. (2001) [21] and Guo et al. [34] reported that the relative supersaturation in reactive crystallization is decisive for the crystal size and depends on the following factors. [Pg.176]

One of the newest particle sizing techniques is light scattering. This technique is used to measure particle size distribution, colloid behavior, particle size growth, aerosol research, clean room monitoring, and pollution monitoring. [Pg.447]

The sfabilify of Pf particles during the 1.2 V hold has also been investigated. At 1.2 V and 80°C in 1 M H2SO4, up to 35% of the ECA was lost after 24 h. Transmission electron microscopy analysis of the tested catalysts found a growth in the Pt particle size distribution, suggesting that small Pt particles (-2 nm) are particularly susceptible to dissolution/agglomeration xmder steady-state voltage holds at 1.2 V. [Pg.34]


See other pages where Particle size distribution growth is mentioned: [Pg.73]    [Pg.124]    [Pg.383]    [Pg.1656]    [Pg.1662]    [Pg.212]    [Pg.52]    [Pg.180]    [Pg.189]    [Pg.248]    [Pg.146]    [Pg.533]    [Pg.256]    [Pg.5]    [Pg.47]    [Pg.775]    [Pg.23]    [Pg.30]    [Pg.89]    [Pg.233]    [Pg.234]    [Pg.420]    [Pg.262]    [Pg.263]    [Pg.278]    [Pg.407]    [Pg.172]    [Pg.173]    [Pg.1051]    [Pg.1053]    [Pg.390]    [Pg.407]    [Pg.175]    [Pg.199]    [Pg.252]    [Pg.288]    [Pg.101]    [Pg.212]    [Pg.331]    [Pg.285]   
See also in sourсe #XX -- [ Pg.104 , Pg.105 , Pg.111 ]




SEARCH



Growth distribution

Particle distribution

Particle growth

Particle size distribution

Particle size, growth

Particle sizing distribution

© 2024 chempedia.info