Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium hydrosilylation

PLATINUM CATALYZED HYDROSILYLATION AND PALLADIUM CATALYZED CROSS-COUPLING ONE-POT HYDROARYLATION OF 1-HEPTYNE TO (E)-l-(l-HEPTENYL)-4-... [Pg.28]

Concerning enantioselective processes, Fujihara and Tamura have proved that palladium NPs containing (S)-BINAP (2,2 -bis(diphenylphosphino)-l,l -binaphthyl) as chiral stabiliser, catalyse the hydrosilylation of styrene with trichlorosilane, obtaining (S)-l-phenylethanol as the major isomer (ee = 75%) [42]. In contrast, the palladium complex [Pd(BINAP)(C3H5)]Cl is inactive for the same reaction [43]. [Pg.431]

Palladium-catalyzed hydrosilylation of styrene derivatives usually proceeds with high regioselectivity to produce benzylic silanes, 1-aryl-1-silyle thanes, because of the... [Pg.77]

In all of these cases, paUadium-catalyzed hydrosilylation proceeds via hydropalla-dation followed by reductive elimination of alkyl- and silyl group from the palladium. In the reaction of o-aUylstyrene (24) with trichlorosilane, which gives hydrosilylation products on the styrene double bond 25 and cycUzed product 26, the hy-dropalladation process is supported by the absence of side products which would result from the intermediate of the silylpaUadation process (Scheme 3-11) [37]. [Pg.80]

For the asymmetric hydrosilylation of 1,3-cyclohexadiene (42) (Scheme 3-17), the enantioselectivity is higher in the reaction with phenyldifluorosilane than that with trichlorosilane or methyidichlorosilane. The reaction of 42 with phenyldifluorosilane in the presence of a palladium catalyst coordinated with ferrocenylphosphine... [Pg.83]

Hydrosilylation of dienes accompanied by cyclization is emerging as a potential route to the synthesis of functionalized carbocycles. However, the utility of cycliza-tion/hydrosilylation has been Umited because of the absence of an asymmetric protocol. One example of asymmetric cycUzation/hydrosilylation has been reported very recently using a chiral pyridine-oxazoUne ligand instead of 1,10-phenanthroline of the cationic palladium complex (53) [60]. As shown in Scheme 3-21, the pyridine-oxazoUne Ugand is more effective than the bisoxazoUne ligand in this asymmetric cyclization/hydrosilylation of a 1,6-diene. [Pg.86]

The discussion of the activation of bonds containing a group 15 element is continued in chapter five. D.K. Wicht and D.S. Glueck discuss the addition of phosphines, R2P-H, phosphites, (R0)2P(=0)H, and phosphine oxides R2P(=0)H to unsaturated substrates. Although the addition of P-H bonds can be sometimes achieved directly, the transition metal-catalyzed reaction is usually faster and may proceed with a different stereochemistry. As in hydrosilylations, palladium and platinum complexes are frequently employed as catalyst precursors for P-H additions to unsaturated hydrocarbons, but (chiral) lanthanide complexes were used with great success for the (enantioselective) addition to heteropolar double bond systems, such as aldehydes and imines whereby pharmaceutically valuable a-hydroxy or a-amino phosphonates were obtained efficiently. [Pg.289]

In addition, various chiral (p-A -sulfonylaminoalkyl)phosphine ligands were earlier employed by Achiwa et al. for the asymmetric palladium-catalysed hydrosilylations of cyclopentadiene and styrene, affording the corresponding... [Pg.334]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

The most active palladium catalyst system developed for the asymmetric hydrosilylation of cyclopentadiene (Scheme 23) involves the use of the (/ )-MOP-phen ligand (38), which shows significant enhancement of enantioselectivity compared to (R)-MeO-MOP (80% ee from (38), 39% ee from (36a)).114 Other phosphine ligands that afford active palladium catalysts for the same transformation include the /3-7V-sulfonylaminoalkylphosphine (39) and phosphetane ligand (40) (Equation (13)).115-117 A comparison of the enantioselectivities of these ligands for the palladium-catalyzed hydrosilylation of cyclopentadiene is given in Table 8. [Pg.283]

A summary of the ligand effects of the palladium-catalyzed enantioselective hydrosilylation of styrene is given in Table 9. [Pg.285]

Table 9 Palladium-catalyzed asymmetric hydrosilylation of styrene. Table 9 Palladium-catalyzed asymmetric hydrosilylation of styrene.
The hydrosilylation of butadiene proceeds with palladium compounds even in the absence of phosphines. Other ligands, such as glyoxime, benzonitrile, and 1,5-cyclooctadiene, can be used as effective ligands for the hydrosilylation of butadiene (65, 67). The reaction of trichlorosilane and dichlorosilane with isoprene proceeded regioselectively and stereo-selectively to give Z-l-trichlorosilyl-2-methyl-2-butene (67) (65, 66, 68). No reaction of trimethylsilane with isoprene took place, and this shows the lower reactivity of trialkylsilane. [Pg.162]

Hydrosilylation of butadiene using palladium complexes supported on inorganic materials such as silica and alumina has been carried out (77, 72) however, the supported catalyst is not stable and it is difficult to compare with the soluble catalysts. [Pg.164]

Platinum(II) complexes such as [PtCl2(PhMePR)]2 (R = benzyl or propyl) have been used for asymmetric reduction of phenylketones to alcohols with up to 19% ee via the consecutive hydrosilylation-hydrolysis process (Section III,A,4) (2//, 307). A nickel(II) complex with the ben-zylphosphine, and palladium(II) phosphine complexes did not catalyze the hydrosilylation (211). [Pg.357]

Widenhoefer has also disclosed an interesting extension consisting of hydrosilylative cyclization of a diene catalyzed by palladium. High enantioselectivity (up to 95% ee) was achieved by using palladium catalysts with Ci-symmetric pyridine-oxazoline ligands351,364 and recent mechanistic studies have confirmed the involvement of an intramolecular carbometallation step.365... [Pg.350]

C-C bond formation mediated by silane.6,6a 6f With respect to the development of intramolecular variants, these seminal studies lay fallow until 1990, at which point the palladium- and nickel-catalyzed reductive cyclization of tethered 1,3-dienes mediated by silane was disclosed. As demonstrated by the hydrosilylation-cyclization of 1,3,8,10-tetraene 21a, the /rarcr-divinylcyclopentanes 21b and 21c are produced in excellent yield, but with modest stereoselectivity.46 Bu3SnH was shown to participate in an analogous cyclization.46 Isotopic labeling and crossover experiments provide evidence against a mechanism involving initial diene hydrosilylation. Rather, the collective data corroborate a mechanism involving oxidative coupling of the diene followed by silane activation (Scheme 15). [Pg.502]

The first rhodium-catalyzed reductive cyclization of enynes was reported in I992.61,61a As demonstrated by the cyclization of 1,6-enyne 37a to vinylsilane 37b, the rhodium-catalyzed reaction is a hydrosilylative transformation and, hence, complements its palladium-catalyzed counterpart, which is a formal hydrogenative process mediated by silane. Following this seminal report, improved catalyst systems were developed enabling cyclization at progressively lower temperatures and shorter reaction times. For example, it was found that A-heterocyclic carbene complexes of rhodium catalyze the reaction at 40°C,62 and through the use of immobilized cobalt-rhodium bimetallic nanoparticle catalysts, the hydrosilylative cyclization proceeds at ambient temperature.6... [Pg.506]

Beyond palladium, it has recently been shown that isoelectronic metal complexes based on nickel and platinum are active catalysts for diyne reductive cyclization. While the stoichiometric reaction of nickel(O) complexes with non-conjugated diynes represents a robust area of research,8 only one example of nickel-catalyzed diyne reductive cyclization, which involves the hydrosilylative cyclization of 1,7-diynes to afford 1,2-dialkylidenecyclohexanes appears in the literature.7 The reductive cyclization of unsubstituted 1,7-diyne 53a illustrates the ability of this catalyst system to deliver cyclic Z-vinylsilanes in good yield with excellent control of alkene geometry. Cationic platinum catalysts, generated in situ from (phen)Pt(Me)2 and B(C6F5)3, are also excellent catalysts for highly Z-selective reductive cyclization of 1,6-diynes, as demonstrated by the cyclization of 1,6-diyne 54a.72 The related platinum bis(imine) complex [PhN=C(Me)C(Me)N=Ph]2Pt(Me)2 also catalyzes diyne hydrosilylation-cyclization (Scheme 35).72a... [Pg.512]

A separate, quite thorough study of terminal alkyne hydrosilylation with platinum arrived at a similar set of conditions.39 This work utilized a one-pot hydrosilylation with the preformed platinum(O) complex (>Bu3P)Pt[(CH2=CH)Me2Si]20 ([(CH2=CH)Me2Si]20 = DVDS) and subsequent palladium-catalyzed coupling reaction to demonstrate that the platinum catalyst is compatible with cross-coupling conditions, providing a convenient hydrocarbation of terminal alkynes (Table 2). [Pg.793]

A hydrosilylation/cyclization process forming a vinylsilane product need not begin with a diyne, and other unsaturation has been examined in a similar reaction. Alkynyl olefins and dienes have been employed,97 and since unlike diynes, enyne substrates generally produce a chiral center, these substrates have recently proved amenable to asymmetric synthesis (Scheme 27). The BINAP-based catalyst employed in the diyne work did not function in enyne systems, but the close relative 6,6 -dimethylbiphenyl-2,2 -diyl-bis(diphenylphosphine) (BIPHEMP) afforded modest yields of enantio-enriched methylene cyclopentane products.104 Other reported catalysts for silylative cyclization include cationic palladium complexes.105 10511 A report has also appeared employing cobalt-rhodium nanoparticles for a similar reaction to produce racemic product.46... [Pg.809]

Recently, another type of catalytic cycle for the hydrosilylation has been reported, which does not involve the oxidative addition of a hydrosilane to a low-valent metal. Instead, it involves bond metathesis step to release the hydrosilylation product from the catalyst (Scheme 2). In the cycle C, alkylmetal intermediate generated by hydrometallation of alkene undergoes the metathesis with hydrosilane to give the hydrosilylation product and to regenerate the metal hydride. This catalytic cycle is proposed for the reaction catalyzed by lanthanide or a group 3 metal.20 In the hydrosilylation with a trialkylsilane and a cationic palladium complex, the catalytic cycle involves silylmetallation of an alkene and metathesis between the resulting /3-silylalkyl intermediate and hydrosilane (cycle D).21... [Pg.816]


See other pages where Palladium hydrosilylation is mentioned: [Pg.517]    [Pg.29]    [Pg.308]    [Pg.431]    [Pg.457]    [Pg.73]    [Pg.75]    [Pg.76]    [Pg.78]    [Pg.79]    [Pg.80]    [Pg.83]    [Pg.84]    [Pg.85]    [Pg.288]    [Pg.334]    [Pg.14]    [Pg.269]    [Pg.283]    [Pg.285]    [Pg.330]    [Pg.498]    [Pg.500]    [Pg.500]    [Pg.808]    [Pg.809]    [Pg.810]    [Pg.815]    [Pg.816]   
See also in sourсe #XX -- [ Pg.98 , Pg.434 ]




SEARCH



Hydrosilylation palladium catalysed

Hydrosilylation palladium catalysis

Palladium catalysts, hydrosilylation using

Palladium catalyzed reactions hydrosilylation

Palladium complexes hydrosilylation

Palladium-catalyzed hydrosilylation

Palladium-catalyzed hydrosilylation asymmetric

Palladium-catalyzed hydrosilylation of 1,3-dienes

© 2024 chempedia.info