Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes carbonylation reactions

Not only do palladium complexes catalyze reactions of Eq. (58), but nickel complexes were also effective (51) and formed the same products. Complexes such as Fe(CO)5 and Fe2(CO)8 were ineffective. Cobalt carbonyl, and tris-triphenylphosphinerhodium chloride were effective even at room temperature, but no 2 1 adducts were made. With both palladium and nickel, the activity of the catalyst and the distribution of products between 1 1 and 2 1 adducts is greatly dependent on the nature of the donor ligands on the metal. [Pg.442]

The insertion of CO into palladium carbon bonds is a common step in many palladium-catalyzed carbonylation reactions and polymerizations. This reaction takes place under moderate CO pressure (1-3 atm). From the range of compounds that can be carbonylated, it can be inferred that CO will insert into alkyl, aryl, and alkynic bonds (equation 13). One of the few types of Pd-C bonds inert to CO insertion is the Pd-acyl bond, thus only single carbonylations are normally observed. However, a few examples of double carbonylation have been reported. In the case of palladium-catalyzed formation of PhCOCONEt2 from Phi, CO, and NHEt2, reductive elimination from a bisacyl complex has been established as the mechanism, rather than CO insertion into a Pd-acyl bond. [Pg.3557]

The carbonylation of allylic compounds by transition metal complexes is a versatile method for synthesizing unsaturated carboxylic acid derivatives (Eq. 11.22) [64]. Usually, palladium complexes are used for the carbonylation of allylic compounds [65], whereas ruthenium complexes show characteristic catalytic activity in allylic carbonylation reactions. Cinnamyl methyl carbonate reacts with CO in the presence of a Ru3(CO)i2/l,10-phenanthroline catalyst in dimethylformamide (DMF) to give methyl 4-phenyl-3-butenoate in excellent yield (Eq. 11.23) [66]. The regioselectivity is the same as in the palladium complex-catalyzed reaction. However, when ( )-2-butenyl methyl carbonate is used as a substrate, methyl ( )-2-methyl-2-butenoate is the major product, with the more sterically hindered carbon atom of the allylic group being carbo-nylated (Eq. 11.24). This regioselectivity is characteristic of the ruthenium catalyst [66]. [Pg.284]

Copper(I) triflate was used as a co-catalyst in a palladium-catalyzed carbonylation reaction (Sch. 27). The copper Lewis acid was required for the transformation of homoallylic alcohol 118 to lactone 119. It was suggested that the CuOTf removes chloride from the organopalladium intermediate to effect olefin complexation and subsequent migratory insertion [60]. Copper(I) and copper(II) chlorides activate ruthenium alkylidene complexes for olefin metathesis by facilitating decomplexation of phosphines from the transition metal [61]. [Pg.556]

The Tp ligands have been successfirUy used to prepare the stable copper carbonyl complexes as [Cu(Tp)(CO)]. Recently a solution of CuTp has been employed to improve the solubihty of CO that upon release from the complex has been used in low-pressure, one-pot palladium-mediated carbonylation reactions for the production of C-radiolabeled amides and ureas. The coordination chemistry oftris(3-R-5-R -pyrazolyl)borate ligands bearing different substituents (Tp , Tp ", "ppPhos.Me ... [Pg.227]

In hydrocarboxylation, the Reppe reaction, the catalyst can be nickel or cobalt carbonyl or a palladium complex where R = H or alkyl. [Pg.63]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Most researchers currently agree that the hydrido mechanism is more common than the alkoxycarbonyl path in the alkoxycarbonylation of alkenes with palladium systems. However, carbalkoxy complexes are putative intermediates in carbonylation reactions giving succinates and polyketone diesters, with metals like Co, Rh, or Pd.137... [Pg.192]

In reactions closely related to the carbonylation processes described above, the dimeric azoarene palladium complexes (78) can be transformed efficiently in two steps into 3-imino-2-phenylindazolines (Scheme 95).162... [Pg.361]

The mercuration of phosphonium derivatives has also been observed. The methylene group of the dimeric palladium complex 63 substituted by a carbonyl and a phosphonium functionality is readily mercurated upon reaction with Hg(OAc)2 to afford complex 64 (Equation (22)).7 Further studies demonstrated that the presence of a triphenylphosphonium group alone is sufficient to promote proton-mercury exchange. For example, the reaction of... [Pg.428]

Besides rhodium catalysts, palladium complex also can catalyze the addition of aryltrialkoxysilanes to a,(3-unsaturated carbonyl compounds (ketones, aldehydes) and nitroalkenes (Scheme 60).146 The addition of equimolar amounts of SbCl3 and tetrabutylammonium fluoride (TBAF) was necessary for this reaction to proceed smoothly. The arylpalladium complex, generated by the transmetallation from a putative hypercoordinate silicon compound, was considered to be the catalytically active species. [Pg.395]

Under appropriate conditions, alcohols and amines can undergo an oxidative double carbonylation process, with formation of oxalate esters (Eq. 34), oxamate esters (Eq. 35) or oxamides (Eq. 36). These reactions are usually catalyzed by Pd(II) species and take place trough the intermediate formation of bis(alkoxycarbonyl)palladium, (alkoxycarbonyl)(carbamoyl)palladium or bis(carbamoyl)palladium complexes, as shown in Scheme 29 (NuH, Nu H = alcohol or amine) [227,231,267,293-300]. [Pg.260]

In a slightly less convenient procedure, but one which has general versatility, carbonylation of aryl (or vinyl) palladium compounds produces aryl, heteroaryl, and vinyl carboxylic acids. As with the other procedures, immediate upon its formation, the carboxylate anion migrates to the aqueous phase. Consequently, haloaromatic acids can be obtained from dihaloarenes, without further reaction of the second halogen atom, e.g. 1,4-dibromobenzene has been carbonylated (90% conversion) to yield 4-bromobenzoic acid with a selectivity for the monocarbonylation product of 95%. Additionally, the process is economically attractive, as the organic phase containing the catalyst can be cycled with virtually no loss of activity and ca. 4000 moles of acid can be produced for each mole of the palladium complex used [4],... [Pg.383]

Complexes of other metals are also capable of catalyzing useful carbonylation reactions under phase transfer conditions. For example, certain palladium(o) catalysts, like Co2(C0)g, can catalyze the carbonylation of benzylic halides to carboxylic acids. When applied to vinylic dibromides, unsaturated diacids or diynes were obtained, using Pd(diphos)2[diphos l,2-bis(diphenylphosphino)ethane] as the metal catalyst, benzyltriethylammonium chloride as the phase transfer agent, and t-amyl alcohol or benzene as the organic phase(18),... [Pg.12]

Recently, the oxidative addition of C2-S bond to Pd has been described. Methyl levamisolium triflate reacts with [Pd(dba)2] to give the cationic palladium complex 35 bearing a chiral bidentate imidazolidin-2-ylidene ligand [120]. The oxidative addition of the levamisolium cation to triruthenium or triosmium carbonyl compounds proceeds also readily to yield the carbene complexes [121], The oxidative addition of imidazolium salts is not limited to or d transition metals but has also been observed in main group chemistry. The reaction of a 1,3-dimesitylimidazolium salt with an anionic gallium(I) heterocycle proceeds under formation of the gaUium(III) hydrido complex 36 (Fig. 12) [122]. [Pg.108]

Hydrolysis of the ester forms adipic acid, used to manufacture nylon—6. Carbonylations of nitroaromatics are used to synthesize an array of products including amines, carbamates, isocyanates, ureas and azo compounds. These reactions are catalyzed by iron, ruthenium, rhodium and palladium complexes. For example, carhonylation of nitrobenzene in the presence of methanol produces a carbamate ... [Pg.190]


See other pages where Palladium complexes carbonylation reactions is mentioned: [Pg.266]    [Pg.34]    [Pg.787]    [Pg.240]    [Pg.242]    [Pg.109]    [Pg.81]    [Pg.121]    [Pg.563]    [Pg.1035]    [Pg.228]    [Pg.589]    [Pg.78]    [Pg.154]    [Pg.182]    [Pg.190]    [Pg.526]    [Pg.318]    [Pg.709]    [Pg.212]    [Pg.371]    [Pg.106]    [Pg.158]    [Pg.186]    [Pg.79]    [Pg.114]    [Pg.480]    [Pg.58]    [Pg.187]    [Pg.385]   
See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Carbonyl complexes reactions

Palladium carbonyl complexes

Palladium carbonylation

Palladium carbonylations

Palladium carbonyls

Palladium complexes carbonylation

Palladium complexes reactions

© 2024 chempedia.info