Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pacific Ocean aragonite saturation

North Atlantic to 500 m in the North Pacific. This reflects an increasing addition of CO2 to deep waters as meridional overturning circulation moves them from the Atlantic to the Indian and then to the Pacific Ocean. Thus, as a water mass ages, it becomes more corrosive to calcium carbonate. Since aragonite is more soluble than calcite, its saturation horizon lies at shallower depths, rising from 3000 m in the North Atlantic to 200 m in the North Pacific. [Pg.396]

Chen (1982) pointed out that excess CO2 has caused the aragonite saturation depth in the North Pacific Ocean to rise close to the sea surface. [Pg.176]

The Geochemical Ocean Section Program (GEOSECS) has produced data from which it is possible to profile the saturation state of seawater with respect to calcite and aragonite in the Atlantic and Pacific oceans. Representative north-south calcite saturation profiles for the Western Atlantic and Central Pacific oceans are presented in Figures 5 and 6 (based on 39). It was observed that the saturation state of seawater with respect to calcite at the CCD was close to constant ( 2 = 0.70 I" 0,05) except in the southern extremes (39). Broecker and Takahashi (31) have recently found that the carbonate ion concentration is close to constant at the FL, when appropriate corrections are made for pressure. The saturation state of seawater at the FL, calculated by the method presented in this paper, is 0.80 0.05. Berger (40) has presented profiles for Rq, FL, CCD and CSL (calcite saturation level) in the eastern and western Atlantic ocean (see... [Pg.514]

Pteropods are a type of plankton also known as winged snails. When pteropods collected from the subarctic Pacific Ocean are kept in water that is less than saturated with aragonite, their shells begin to dissolve within 48 h. Animals such as the pteropod lie at the base of the food chain. Their destruction would reverberate through the entire ocean. [Pg.239]

Saturation state of seawater, Cl, with respeot to (a) calcite and (b) aragonite as a function of depth. The dashed vertical line marks the saturation horizon. North Pacific profile is from 27.5°N 179.0°E (July 1993) and North Atlantio profile is from 24.5°N 66.0°W (August 1982) from CDIAC/WOCE database http //cdiac.esd.oml.gov/oceans/CDIACmap.html) Section P14N, Stn 70 and Section A05, Stn 84. Source From Zeebe, R.E. and D. Wolf-Gladrow (2001) Elsevier Oceanography Series, 65, Elsevier, p. 26. [Pg.395]

Based on thermodynamic considerations, sediments that lie at depths below the saturation horizon should have 0% CaCOj. This then explains why calcareous oozes are restricted to sediments lying on top of the mid-ocean ridges and rises and why the sediments of the North Pacific are nearly devoid of calcite and aragonite. (The low %CaCOj in the sediments of the continental margin is a result of dilution by terrestrial clay minerals.)... [Pg.396]


See other pages where Pacific Ocean aragonite saturation is mentioned: [Pg.296]    [Pg.37]    [Pg.171]    [Pg.527]    [Pg.3130]    [Pg.3522]    [Pg.3540]    [Pg.794]    [Pg.9]    [Pg.123]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Aragonite

Pacific

Pacific Ocean

© 2024 chempedia.info