Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen atom configuration

A similar situation arises with the bonding in H2O, but in this case matters are not as clear. The ground-state oxygen atom configuration is... [Pg.34]

This potential will lead to a single water molecule adsorbing at the PZC on Pt with the dipole pointmg axi ay from the surface and the oxygen atom pointing directly at a Pt-atom site (on-top configuration). [Pg.595]

Other compounds containing lone pairs of electrons readily form co-ordinate links and in each case a change in spatial configuration accompanies the bond formation. The oxygen atom in dimethyl ether, CHj—O—CHj, has two lone pairs of electrons and is able to donate one pair to, for example, boron trichloride ... [Pg.41]

Once the atoms arc defined, the bonds between them arc specified in a bond block. Each line of this block specifies which two atoms are bonded, the multiplicity of the bond (the bond type entry) and the stereo configuration of the bond (there arc also three additional fields that arc unused in Molfiles and usually set to 0). The indices of the atoms reflect the order of their appearance in the atom block. In the example analyzed, V relates to the first carbon atom (see also Figure 2-24). "2" to the second one, 3" to oxygen atom, etc. Then the two first lines of the bond block of the analyzed file (Figure 2-29) describe the single bond between the two carbon atoms C1-C2 and the double bond C2=0-5, respectively. [Pg.50]

The configuration at the chiral centers C-4a, C-5a, and C-12a determine the conformation of the molecule. In order to retain optimum in vitro and in vivo activity, these centers must retain the natural configuration. The hydrophobic part of the molecule from C-5 to C-9 is open to modification ia many ways without losing antibacterial activity. However, modification at C-9 may be critical because steric iateractions or hydrogen bonding with the oxygen atom at C-10 may be detrimental to the activity. [Pg.179]

Structure. The straiued configuration of ethylene oxide has been a subject for bonding and molecular orbital studies. Valence bond and early molecular orbital studies have been reviewed (28). Intermediate neglect of differential overlap (INDO) and localized molecular orbital (LMO) calculations have also been performed (29—31). The LMO bond density maps show that the bond density is strongly polarized toward the oxygen atom (30). Maximum bond density hes outside of the CCO triangle, as suggested by the bent bonds of valence—bond theory (32). The H-nmr spectmm of ethylene oxide is consistent with these calculations (33). [Pg.452]

The solvated phosphorane adds to the polarized carbonyl with the incipient C-21 methyl group pointing away from the bulk of the steroid nucleus. The newly formed carbon-carbon bond must then rotate in order for the tri-phenylphosphine group and oxygen atom to have the proper orientation for the elimination of triphenylphosphine oxide. This places the C-21 methyl in the CIS configuration. [Pg.131]

The dipole density profile p (z) indicates ordered dipoles in the adsorbate layer. The orientation is largely due to the anisotropy of the water-metal interaction potential, which favors configurations in which the oxygen atom is closer to the surface. Most quantum chemical calculations of water near metal surfaces to date predict a significant preference of oxygen-down configurations over hydrogen-down ones at zero electric field (e.g., [48,124,141-145]). The dipole orientation in the second layer is only weakly anisotropic (see also Fig. 7). [Pg.361]

In chemical reactions, when the atomic configurations of molecules are changed, matter is neither created nor destroyed (Law of Conservation of Matter). The identity and number of atoms remain unchanged. When methane gas (Cl L) is burned, its atoms don t disappear they combine with oxygen (O,) in the air and are transformed into carbon dioxide (CO,) and water vapor (H,0) ... [Pg.806]

Diverse series of diphenyl sulphoxide (DPSO) complexes of Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ca(II), Al(II) and Mg(II) with various large anions have been reported187-191. The complexes have the general formula M(DPSO)6(Anion) where M is the metal cation. The reflection spectra in the visible and near-IR region indicate an octahedral configuration around the metal ion surrounded by the DPSO molecules. Comparison with the spectra of DMSO complexes shows that they have almost identical structures. IR spectra indicate that the oxygen atom in the sulphinyl group is the donor atom in all these complexes. [Pg.567]

A biradical is a molecule with two unpaired electrons. The unpaired electrons are usually on different atoms, as depicted in (20). In that biradical, one unpaired electron is on one carbon atom of the chain and the second is on another carbon atom several bonds away. In some cases, though, both electrons are on the same atom. One of the most important examples is the oxygen atom itself. Its electron configuration is He]2s22/ x.22py12pzl and its Lewis symbol is -O. The O atom has two unpaired electrons, and so it can be regarded as a special type of biradical. [Pg.197]

The oxygen atom, with valence electron configuration 2s12px12pv 12p J, has two electrons with unpaired spins (its Lewis symbol is -O-, which we abbreviate to -0-). Two radicals are also produced when the oxygen atom attacks a hydrogen molecule ... [Pg.674]


See other pages where Oxygen atom configuration is mentioned: [Pg.152]    [Pg.581]    [Pg.239]    [Pg.108]    [Pg.188]    [Pg.98]    [Pg.337]    [Pg.469]    [Pg.144]    [Pg.477]    [Pg.209]    [Pg.134]    [Pg.127]    [Pg.24]    [Pg.167]    [Pg.169]    [Pg.173]    [Pg.36]    [Pg.214]    [Pg.221]    [Pg.27]    [Pg.196]    [Pg.88]    [Pg.282]    [Pg.171]    [Pg.527]    [Pg.530]    [Pg.114]    [Pg.104]    [Pg.148]    [Pg.83]    [Pg.130]    [Pg.291]    [Pg.469]    [Pg.564]    [Pg.604]    [Pg.843]    [Pg.70]    [Pg.17]   


SEARCH



Configurational atom

Oxygen atom

Oxygen atomic

© 2024 chempedia.info