Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide surfaces molecules

The molecules for SA monolayers are chosen or syntliesized according to tire substrate tliat should be coated. Thiol-tenninated entities have been mostly used in connection witli metal surfaces, but also on GaAs [126]. Chloro- and acid-tenninated molecules are most often employed on oxide surfaces of metals or semiconductors. However, tliey have also occasionally been used witli metal surfaces [127]. [Pg.2622]

Once a metal surface has been conditioned by one of the above methods, a coupling agent composed of a bifimctional acid—methacrylate similar to a dentin adhesive is appHed. This coupling material is usually suppHed as a solvent solution that is painted over the conditioned metal surface. The acidic functional group of the coupling molecule interacts with the metal oxide surface while the methacrylate functional group of the molecule copolymerizes with the resin cement or restorative material placed over it (266,267). [Pg.493]

The value of n in the polymeric adsorbed species (CO) is larger on the 3c sites than on die 4c and 5c sites. The CO2 molecule is much more suongly adsorbed, indicating ion formation on the oxide surface, and the evidence suggests... [Pg.125]

The concentration dependence of CO oxidation over Pt at (02) (CO) l differs from the concentration dependence of CO oxidation over copper chromite at (02)°-2(C0). This can be explained by the fact that after the departure of a C02 molecule, the reoxidation of platinum surfaces is slow but the reoxidation of base metal oxide surfaces is fast. On the other hand,... [Pg.93]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

There are, at present, two overriding reasons an experimentalist would choose to employ laser Raman spectroscopy as a means of studying adsorbed molecules on oxide surfaces. Firstly, the weakness of the typical oxide spectrum permits the adsorbate spectrum to be obtained over the complete fundamental vibrational region (200 to 4000 cm-1). Secondly, the technique of laser Raman spectroscopy is an inherently sensitive method for studying the vibrations of symmetrical molecules. In the following sections, we will discuss spectra of pyridine on silica and other surfaces to illustrate an application of the first type and spectra of various symmetrical adsorbate molecules to illustrate the second. [Pg.333]

It is unlikely in real tribological events that adsorbed mono-layers work solely to provide lubrication. Instead, adsorption and chemical reactions may occur simultaneously in most cases of boundary lubrication. For example, fatty acid is usually regarded as a friction modiher due to good adsorp-tivity, meanwhile its molecules can react with metal or a metal oxide surface to form metallic soap which provides protection to the surface at the temperature that is higher than its own melting point. [Pg.81]

Staemmler V (2005) The Cluster Approach for the Adsorption of Small Molecules on Oxide Surfaces. 12 219-256... [Pg.294]

Densely packed oxide surfaces, such as MgO(lOO), are largely inactive, but defects, particularly those associated with oxygen vacancies, provide sites where adsorbates may bind strongly. Figure 5.10 shows the adsorption of different molecules on defects in a Ti02 surface. [Pg.175]

A highly detailed picture of a reaction mechanism evolves in-situ studies. It is now known that the adsorption of molecules from the gas phase can seriously influence the reactivity of adsorbed species at oxide surfaces[24]. In-situ observation of adsorbed molecules on metal-oxide surfaces is a crucial issue in molecular-scale understanding of catalysis. The transport of adsorbed species often controls the rate of surface reactions. In practice the inherent compositional and structural inhomogeneity of oxide surfaces makes the problem of identifying the essential issues for their catalytic performance extremely difficult. In order to reduce the level of complexity, a common approach is to study model catalysts such as single crystal oxide surfaces and epitaxial oxide flat surfaces. [Pg.26]

When a A = 1849 A light acts on an ammonia molecule, the latter breaks into a hydrogen atom and an NH2 radical [13]. At the zinc oxide surface the former particle is an electron donor, whereas the latter one is an acceptor. Experiments indicate that in photolysis of ammonia in a vessel shown in Fig. 4.6. only hydrogen atoms can be detected at every level of the vessel, starting from the source. This experimental result can be accounted for by the fact that, even in presence of such acceptors as... [Pg.230]

Now, we consider H, atoms produced from hydrogen molecules adsorbed on zinc oxide under the influence of electron (ion) impact. We suppose that in this case the energy released in interaction of an electron (ion) with an adsorbed molecule is enough to break any bond between hydrogen atoms. As a consequence, Hj atoms bounce apart over the surface. Hydrogen atoms produced in this case are similar to H atoms adsorbed on the oxide surface from the gas phase at small surface coverages. In other words, they can be chemisorbed as charged particles and thus may influence electric conductivity of zinc oxide. This conclusion is consistent with the experimental results. [Pg.276]

The endothelium has many diverse functions that enable it to participate in in-flammatoiy reactions (H27). These include modulation of vascular tone, and hence control of local blood flow changes in structure that allow leakage of fluids and plasma proteins into extravascular tissues local accumulation and subsequent extravasation into tissues of leukocytes and synthesis of surface molecules and soluble factors involved in leukocyte activation (B43). The endothelial cells themselves can modulate vascular tone by the release of vasoactive substances such as prostacyclin, nitric oxide (NO), ET. Endothelium-derived vasoactive substances... [Pg.69]

The surface diffusion of defects and adsorbates is of obvious importance in heterogeneous catalysis, as this process brings the reactants together. Understanding the dynamics of molecules on oxide surfaces is also a key step toward the realization of working molecular electronics. We note here that diffusion of Ob-vacs really means diffusion of Ob into the vacancy, which leaves another Ob-vac in the position vacated by the Ob- Similarly, diffusion of OHb occurs by diffusion of the H atom. [Pg.232]

Despite the enormous impact that scanning probe methods have had on our understanding of reactions at oxide surfaces, both STM and AFM suffer from the lack of chemical specificity. The application of STM-inelastic electron tunneling spectroscopy is a potential solution as it can be used to measure the vibrational spectrum of individual molecules at the surface [69, 70]. [Pg.236]

The reaction of tetraalkyltin complexes with oxide surfaces was studied244,245 but no description at the molecular level has been reported. The low-temperature reactivity of tetraalkyltin (SnR4, where R=Me, Et, i-Pr, Bu) complexes toward the surface of silica was studied in detail.246 At room temperature, the complex is physisorbed. Above 100°C, the adsorbed molecules react with the OH groups and the evolution of alkanes is observed (Scheme 7.15). [Pg.269]

According to the results of Ben Taarit and co-workers (76) and Neikam (77) Ce(III) Y zeolites will not form anthracene cation radicals but upon oxidation to Ce(IV) the radicals are readily formed. This experiment suggests that one role of oxygen during calcination may be to oxidize certain cations. The surface may be oxidized by molecules other than oxygen since the chlorination of 7-alumina by carbon tetrachloride considerably increases the sites responsible for the acceptor character. These sites, which oxidize perylene into the paramagnetic radical ion, have been attributed to biocoordinated positive aluminum atoms (78). [Pg.302]


See other pages where Oxide surfaces molecules is mentioned: [Pg.333]    [Pg.333]    [Pg.2498]    [Pg.191]    [Pg.221]    [Pg.538]    [Pg.177]    [Pg.140]    [Pg.246]    [Pg.325]    [Pg.418]    [Pg.172]    [Pg.29]    [Pg.392]    [Pg.220]    [Pg.56]    [Pg.583]    [Pg.23]    [Pg.204]    [Pg.281]    [Pg.282]    [Pg.232]    [Pg.297]    [Pg.342]    [Pg.394]    [Pg.121]    [Pg.54]    [Pg.136]    [Pg.64]    [Pg.462]    [Pg.304]    [Pg.740]    [Pg.304]    [Pg.453]   
See also in sourсe #XX -- [ Pg.245 , Pg.246 , Pg.247 , Pg.248 ]




SEARCH



Oxide molecules

Surface molecules

© 2024 chempedia.info