Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation diimines

The existence of N2H2 has been shown by, inter alia, the stereospecific ds-hydrogenation of C=C bonds by hydrazine and an oxidant. Diimine can either decompose to N2 and H2 or it can disproportionate to N2 and N2H4. These two reactions appear to be competitive. [Pg.352]

Oxidation H ir Colorant. Color-forming reactions are accompHshed by primary intermediates, secondary intermediates, and oxidants. Primary intermediates include the so-called para dyes, -phenylenediamine, -toluenediamine, -aminodiphenylamine, and p- am in oph en o1, which form a quinone monoimine or diimine upon oxidation. The secondary intermediates, also known as couplers or modifiers, couple with the quinone imines to produce dyes. Secondary intermediates include y -diamines, y -aminophenols, polyhydroxyphenols, and naphthols. Some of the more important oxidation dye colors are given in Figure 1. An extensive listing is available (24,28). [Pg.456]

The mechanism of oxidative dyeing involves a complex system of consecutive, competing, and autocatalytic reactions in which the final color depends on the efficiency with which the various couplers compete with one another for the available diimine. In addition, hydrolysis, oxidation, or polymerization of diimine may take place. Therefore, the color of a mixture caimot readily be predicted and involves trial and error. Though oxidation dyes produce fast colors, some off-shade fading does occur, particularly the development of a red tinge by the slow transformation of the blue indamine dye to a red phenazine dye. [Pg.457]

Dia ene deductions. Olefins, acetylenes, and azo-compounds are reduced by hydrazine in the presence of an oxidizing agent. Stereochemical studies of alkene and alkyne reductions suggest that hydrazine is partially oxidized to the transient diazene [3618-05-1] (diimide, diimine) (9) and that the cis-isomer of diazene is the actual hydrogenating agent, acting by a concerted attack on the unsaturated bond ... [Pg.277]

Dye formation is complex because shading is achieved by employing several developers and several couplers in the same dye bath. The process is illustrated by -phenylenediamine, which is oxidized by the peroxide to a quinone diimine. This short-Hved intermediate can react, for example, with resorcinol to yield a brownish indoaniline. Table 17 provides some insight into the many interactions that exist from just a few components. Further shading is possible by including semipermanent colorants (see Table 16), especially nitroaniline derivatives. [Pg.302]

TV-Substituted l,4-dihydro-l,4-diazocines 6 can be obtained by [TC2S + 2S + 2S] cycloreversion from. mi-benzene diimine (cA-bisazirinofa. c]benzene, diaza-c-bishomobenzene) derivatives 5 at room temperature or slightly elevated temperatures.2 - 5 The syn-benzene diimines (3,8-dia-zatricyclo[5.1.0.02,4]oet-5-enes), which are required for the valence isomerization, are available by two methods from benzene oxide derivatives. [Pg.533]

Peroxides oxidize N,N-DPDD to Wurster s red, a semiquinone diimine derivative [4]. Similarly Wurster s red is also produced from N,N-DPDD by reaction with halogen-containing substances in the presence of sodium ethylate and UV light and by reaction with the chlorinated triazines produced by reaction with chlorine [7]. [Pg.122]

Peroxides oxidize TPDD to Wurster s blue, a product with a semiquinone diimine structure [1]. Similarly Wurster s blue is also produced from TPDD by reaction with halogen-containing substances produced by the reaction of aromatic amines and triazines with chlorine gas. [Pg.216]

Oxidation of Coordinated Diimine Ligands in Basic Solutions of Tris( diimine )iron(III),-ruthenium(III), and -osmium(III)... [Pg.511]

Aminoantipyrine forms with aniline, for instance, a colored diimine derivative under the oxidative influence of iron(III) ions. [Pg.84]

Complexes with pyridine-2,6-diimine ligands, five-coordinate [NiX2(174)] (X = C1, Br) or six-coordinate [Ni(174)2]X2, were usually assumed to have innocent neutral ligands. The X-ray structure and spectroscopic characteristics of [Ni(174)2](PF6) confirm that the complex contains the neutral ligand ([174] ) and a divalent nickel ion.579 The cyclic voltamogram of this complex in CH2C12 shows three reversible one-electron-transfer processes at = 1.19 V, —1.30 V, and — 1.82V (vs. Fc+/Fc), of which the first is a one-electron oxidation, while the other two correspond to two successive one-electron reductions. The spectroscopic data allow one to assign these processes as follows ([174]1 is a one-electron reduced radical form of [174] ) [Nini(174)°2]3+ [NiII(174)02]21 - " [NiI(174)°2]+ = " [NiI(174)°(174)1 ]°. [Pg.296]

Five-membered heteroaromatic N-oxides have been less systematically investigated although in most cases reaction via an intermediate oxaziridine appears to be involved. The imidazole 3-oxide 90, for example, is converted on irradiation in polar or nonpolar media to the diimine 91.7 5... [Pg.254]

The emission spectra match the fluorescence of the corresponding acid. Methane was detected as a major product in the chemiluminescent oxidation of 57 a and it was suggested that it resulted from the decomposition of methyl-diimine formed after dehydrogenation of the hydrazide 57a ... [Pg.108]

Matsubayashi et al. revealed donor abilities of the unsymmetrical diimine-dithiolene complexes [11-14]. The unsymmetrical complexes provided cation radical salts with various anions including I3, Br3 and TCNQ by use of chemical oxidation [11-14]. The electrical resistivities of the cation radical salts measured with their compressed pellets at room temperature are summarized in Table 1. The electrical resistivities of the dmit complexes were very high. The cation radical salts of the CgH4Sg-complexes, which have the BEDT-TTF moiety [22, 23], exhibited lower resistivity than those of dmit complexes, except for [(Bu-pia)Pt(CgH4Sg)] salts. However, crystal structures of these salts were not reported, and details of their electrical properties and electronic states were not discussed based on their crystal structures. [Pg.41]

The question of which pathway is preferred was very recently addressed for several diimine-chelated platinum complexes (93). It was convincingly shown for dimethyl complexes chelated by a variety of diimines that the metal is the kinetic site of protonation. In the system under investigation, acetonitrile was used as the trapping ligand L (see Fig. 1) which reacted with the methane complex B to form the elimination product C and also reacted with the five-coordinate alkyl hydride species D to form the stable six-coordinate complex E (93). An increase in the concentration of acetonitrile led to increased yields of the methyl (hydrido)platinum(IV) complex E relative to the platinum(II) product C. It was concluded that the equilibration between the species D and B and the irreversible and associative1 reactions of these species with acetonitrile occur at comparable rates such that the kinetic product of the protonation is more efficiently trapped at higher acetonitrile concentrations. Thus, in these systems protonation occurs preferentially at platinum and, by the principle of microscopic reversibility, this indicates that C-H activation with these systems occurs preferentially via oxidative addition (93). [Pg.278]

In a study of the methane complex [(diimine)Pt(CH3)(CH4)]+ (diimine = HN=C(H)-C(H)=NH), relevant to the diimine system experimentally investigated by Tilset et al. (28), theoretical calculations indicate preference for the oxidative addition pathway (30). When one water molecule was included in these calculations, the preference for oxidative addition increased due to the stabilization of Pt(IV) by coordinated water (30). The same preference for oxidative addition was previously calculated for the ethylenediamine (en) system [(en)Pt(CH3)(CH4)]+ (151). This model is relevant for the experimentally investigated tmeda system [(tmeda)Pt(CH3)(solv)]+ discussed above (Scheme 7, B) (27,152). For the bis-formate complex Pt(02CH)2, a a-bond metathesis was assumed and the energies of intermediates and transition states were calculated... [Pg.290]


See other pages where Oxidation diimines is mentioned: [Pg.382]    [Pg.382]    [Pg.139]    [Pg.177]    [Pg.254]    [Pg.223]    [Pg.206]    [Pg.44]    [Pg.89]    [Pg.149]    [Pg.223]    [Pg.480]    [Pg.487]    [Pg.7]    [Pg.53]    [Pg.285]    [Pg.181]    [Pg.716]    [Pg.85]    [Pg.76]    [Pg.94]    [Pg.423]    [Pg.362]    [Pg.364]    [Pg.124]    [Pg.528]    [Pg.42]    [Pg.186]    [Pg.281]    [Pg.294]    [Pg.301]    [Pg.202]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Coordinated diimine ligands, oxidation

Coordinated diimine ligands, oxidation electron transfer

Coordinated diimine ligands, oxidation products

Coordinated diimine ligands, oxidation reaction products

Diimine

Diimines

Diimines, platinum -diimine oxidation

Iron diimine complexes oxidation

© 2024 chempedia.info