Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxetanes, from alkene-carbonyl photocycloaddition

Photocycloaddition of thiones to alkenes is the most popular and fruitful method for the preparation of the thietane system. In analogy to the formation of the oxetanes by cycloaddition of the electronic excited ( ,tc ) carbonyls, thietanes can be expected to arise photochemically from aromatic thioketones and substituted olefins as well as 1,2- and 1,3-dienes. ° Thiobenzophenone serves as a source of a sulfur atom and, because of its blue color, which disappears on photocycloaddition, permits exact control over the reaction time. A mixture of thiobenzophenone and a-phellandrene must be irradiated for 70 hr before the blue color disappears (Eq. 2) and... [Pg.220]

The Patemo-Biichi reaction is a photocycloaddition reaction of a n,ji carbonyl compound to an alkene in the ground state from either the Si or the rl i state. The reaction can occur through the initial C O bond formation or through a previous formation of the C—C bond. A frontier orbitals approach can be used to explain the formation of oxetanes. We can observe the HSOMO-LUMO interaction in which the half-occupied ji carbonyl orbital interacts with the unoccupied ji molecular orbital of an electron-deficient alkene, and a C,0-biradical is formed. The LSOMO-HOMO interaction in which the half-occupied n orbital of the carbonyl O atom interacts with the ji orbital of an electron-rich alkene, and a C,C-biradical is formed [13, 14]. [Pg.83]

The intramolecular attack of an excited carbonyl on an alkene can occur to provide oxetane products, even in cases when the corresponding intermolecular reaction is imsuccessful. Thus the intramolecular reaction surely benefits from favorable entropic considerations. Jones and Carless have summarized the scope and utility of intramolecular Patemo-BUchi photocycloadditions. There is general agreement that successful implementation of an intramolecular reaction requires that the Norrish type II photoreactionsand other hydrogen abstraction processes be overcome. In addition, the intramolecular reaction provides access to polyoxygenated ring systems that can exhibit remarkable properties because of their strain. [Pg.178]

If you see a four-membered ring, think [2 + 2] cycloaddition, especially if the ring is a cyclobutanone (ketene) or light is required (photochemically allowed). Ketenes and other cumulenes undergo [2 + 2] cycloadditions with special facility. An oxetane (four-membered ring with one O) is often obtained from the [2 + 2] photocycloaddition of a carbonyl compound and an alkene. [Pg.182]

The Patemo-Buchi reaction is one of the more predictable photocycloaddition reactions. Regiocontrol of the photoproduced oxetane is a function of the stepwise addition of the carbonyl chromophore to the alkene [30]. In the case of electron-rich alkenes, excitation of the carbonyl group produces a triplet species that adds to the alkene. The product regioselectivity is a result of addition that generates the most stable biradical, and the triplet lifetime of the intermediate biradical allows for substantial stereoselectivity prior to closing (see Scheme 2). Electron poor alkenes are more likely to undergo cycloaddition with carbonyl groups directly from an exciplex [31]. [Pg.190]

The photochemical reactivity of P-ketoesters is different form that of P-diketones. Irradiation of a P-ketoester in the presence of an alkene produces oxetane via the ketone carbonyl instead of the desired cyclobutane ring system. Therefore, it is necessary to covalently lock the ketoesters as the enol tautomers. To this end, silyl enol ethers, 129 and 132a, and enol acetates, 130 and 132b, were prepared, but these substrates still fail to undergo the desired intramolecular [2 + 2] photocycloaddition with olefins. The only new products observed in these reactions result from the photo-Fries rearrangement of the cyclic enol acetate (130 to 131) and cis-trans isomerization of both acyclic substrates 132a/b. However, tetronates are appropriate substrates for both intermolecular and intramolecular photocycloadditions with olefins. In addition, enol acetates and silyl enol ethers of p-keto esters are known to undergo [2 + 2] photoaddition with cyclic enones (vide infra). [Pg.468]


See other pages where Oxetanes, from alkene-carbonyl photocycloaddition is mentioned: [Pg.1218]    [Pg.113]    [Pg.296]    [Pg.932]    [Pg.2126]   
See also in sourсe #XX -- [ Pg.374 , Pg.375 ]

See also in sourсe #XX -- [ Pg.315 ]




SEARCH



2- oxetane 3-alken

Alkenes carbonylation

Alkenes oxetanes

Alkenes photocycloadditions

Carbonyl, oxetanes

From alkenes

From oxetanes

Oxetane

Oxetanes

Oxetanes, carbonylation

Oxetans

Photocycloadditions

© 2024 chempedia.info