Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orientational relaxation in dense media

The orientation of linear rotators in space is defined by a single vector directed along a molecular axis. The orientation of this vector and the angular momentum may be specified within the limits set by the uncertainty relation. In a rarefied gas angular momentum is well conserved at least during the free path. In a dense liquid it is a molecule s orientation that is kept fixed to a first approximation. Since collisions in dense gas and liquid change the direction and rate of rotation too often, the rotation turns into a process of small random walks of the molecular axis. Consequently, reorientation of molecules in a liquid may be considered as diffusion of the symmetry axis in angular space, as was first done by Debye [1], [Pg.59]

The Debye phenomenology is consistent with both gas-like and solidlike model representations of the reorientation mechanism. Reorientation may result either from free rotation paths or from jumps over libration barriers [86]. Primary importance is attached to the resulting angle of reorientation, which should be small in an elementary step. If it is [Pg.59]

The results of the Debye theory reproduced in the lowest order of perturbation theory are universal. Only higher order corrections are peculiar to the specific models of molecular motion. We have shown in conclusion how to discriminate the models by comparing deviations from Debye theory with available experimental data. [Pg.60]


Debye phenomenon and theory 59-60, 198 dense media see orientational relaxation in dense media orientational diffusion 70 Debye plateau 6, 73, 81 dephasing see adiabatic dephasing detailed balance principle, spectral collapse 137... [Pg.296]

DGIOS and ELIOS 160, 162 infra-red spectroscopy, orientational relaxation in dense media 59 infra-red spectrum... [Pg.297]

Debye s theory, considered in Chapter 2, applies only to dense media, whereas spectroscopic investigations of orientational relaxation are possible for both gas and liquid. These data provide a clear presentation of the transformation of spectra during condensation of the medium (see Fig. 0.1 and Fig. 0.2). In order to describe this phenomenon, at least qualitatively, one should employ impact theory. The first reason for this is that it is able to describe correctly the shape of static spectra, corresponding to free rotation, and their impact broadening at low pressures. The second (and main) reason is that impact theory can reproduce spectral collapse and subsequent pressure narrowing while proceeding to the Debye limit. [Pg.198]


See other pages where Orientational relaxation in dense media is mentioned: [Pg.59]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.298]    [Pg.298]    [Pg.59]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.298]    [Pg.298]    [Pg.60]    [Pg.27]    [Pg.28]   


SEARCH



Oriented media

Relaxation orientational

© 2024 chempedia.info