Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organocatalysts amines

In a recently published report by MacMillan s group [121] on the enantioselective synthesis of pyrroloindoline and furanoindoline natural products such as (-)-flustramine B 2-219 [122], enantiopure amines 2-215 were used as organocatalysts to promote a domino Michael addition/cyclization sequence (Scheme 2.51). As substrates, the substituted tryptamine 2-214 and a, 3-unsaturated aldehydes were used. Reaction of 2-214 and acrolein in the presence of 2-215 probably leads to the intermediate 2-216, which cyclizes to give the pyrroloindole moiety 2-217 with subsequent hydrolysis of the enamine moiety and reconstitution of the imidazolid-inone catalyst. After reduction of the aldehyde functionality in 2-217 with NaBH4 the flustramine precursor 2-218 was isolated in very good 90 % ee and 78 % yield. [Pg.80]

On the Bifunctionality of Chiral Thiourea Tertiary-Amine Based Organocatalysts Competing Routes to C-C Bond Formation in a Michael-Addition... [Pg.13]

Takemoto et al. were the first to report that hifunctional organocatalysts of the thiourea - tert-amine type efficiently promote certain Michael-reactions, e.g., the addition of P-dicarhonyl compounds to nitro olefins (Scheme 6) [43 5],... [Pg.13]

Wang and co-workers reported a novel class of organocatalysts for the asymmetric Michael addition of 2,4-pentandiones to nitro-olefms [131]. A screen of catalyst types showed that the binaphthol-derived amine thiourea promoted the enantiose-lective addition in high yield and selectivity, unlike the cyclohexane-diamine catalysts and Cinchona alkaloids (Scheme 77, Table 5). [Pg.195]

The 1,3-dipolar cycloaddition of azomethine yUdes with olefins gives rise to pyrrolidines which represent structural elements of organocatalysts, natural products, and drug candidates. Asymmetric metal-catalyzed variants attracted considerable attention over the last few years [64], Recently, Vicario et al. reported an organo-catalytic [3 -i- 2] cycloaddition of azomethine ylides and a,p-unsaturated aldehydes mediated by a chiral secondary amine [65]. [Pg.428]

On the Bijunctionalit / of Chiral Thiourea-Tert-Amine-Based Organocatalysts 25... [Pg.25]

Scheme 6.55 Design principle of amine-functionalized bifunctional thiourea organocatalysts derived from privileged monofunctional thiourea 9 cooperating with an amine base additive (A) and basic bifunctional mode of action of chiral amine... Scheme 6.55 Design principle of amine-functionalized bifunctional thiourea organocatalysts derived from privileged monofunctional thiourea 9 cooperating with an amine base additive (A) and basic bifunctional mode of action of chiral amine...
Compared to the chemo-catalyzed kinetic resolution of alcohols, there are few reports of similar reactions for amines. Building on other work, one elegant example from Berkessel uses bifunctional organocatalysts to enantioselectively hydrolyze a racemic azlactone, and the dynamic kinetic resolution (DKR) is achieved by in-situ acid-catalyzed racemization of the azlactone under mild conditions to give product N-acylarnino esters in, for example, 72% ee and 96% conversion with phenylalanine [6]. [Pg.271]

Chiral 1,2-oxazines (33) have been prepared from achiral ketones, R -CO-CfT-R2, via an a-oximation step (with a tetrazolylpyrrolidine organocatalyst), followed by a Wittig reaction.87 Subsequent N—O cleavage yields enantiopure ds-allylic alcohols bearing a pendant amine. [Pg.13]

The introduction of a-heteroatom functionalization into an aldehyde or ketone is a very useful class of transformation. Performing it directly and asymmetrically, using organocatalysts, has been reviewed for reactions such as amination, oxygenation, halo- genation, and sulfenylation (44 references).260... [Pg.32]

Direct catalytic intermolecular a-allylic alkylation of aldehydes and cyclic ketones has been achieved using a one-pot combination of a transition metal catalyst, Pd(PPh3)4, and an organocatalyst a secondary amine which facilitates enamine catalysis.300... [Pg.38]

The formation of covalent substrate-catalyst adducts might occur, e.g., by single-step Lewis-acid-Lewis-base interaction or by multi-step reactions such as the formation of enamines from aldehydes and secondary amines. The catalysis of aldol reactions by formation of the donor enamine is a striking example of common mechanisms in enzymatic catalysis and organocatalysis - in class-I aldolases lysine provides the catalytically active amine group whereas typical organocatalysts for this purpose are secondary amines, the most simple being proline (Scheme 2.2). [Pg.10]

Interestingly, however, another comparative study [24] revealed the capacity of other amines related to L-proline (S)-27 to function as organocatalysts in the Mannich reaction under modified reaction conditions [24]. As shown for a model reaction using preformed imines derived from o-anisidine, the thiazolidine carboxylic... [Pg.99]

Asymmetric addition of ketenes to aldehydes is a highly attractive synthetic access to yfi-lactones with perfect atom economy [134, 135]. This reaction can be catalyzed efficiently by using chiral amines as organocatalysts. As early as 1967 Borr-mann et al. described an organocatalytic asymmetric ketene addition to aldehydes [136] chiral tertiary amines, in particular (—)-N,N-dimethyl-a-phenylethylamine or (—)-brucine, were used as catalysts [136]. The resulting lactones were obtained with modest enantioselectivity of up to 44% ee. [Pg.179]

Serotonin (8) mimics have been used effectively as treatments for a variety of psychiatric illnesses [199-201]. Homotryptamines could be constructed by multistep routes. One-pot synthesis of homotryptamines 277a-k was achieved by the conjugate addition of indoles with acrolein in the presence of the MacMillan organocatalysts (118a, 274) followed by reductive amination (Scheme 60) [201]. [Pg.40]

L-Proline is perhaps the most well-known organocatalyst. Although the natural L-form is normally used, proline is available in both enantiomeric forms [57], this being somewhat of an asset when compared to enzymatic catalysis [58], Proline is the only natural amino acid to exhibit genuine secondary amine functionality thus, the nitrogen atom has a higher p Ka than other amino acids and so features an enhanced nucleophilicity compared to the other amino acids. Hence, proline is able to act as a nucleophile, in particular with carbonyl compounds or Michael acceptors, to form either an iminium ion or enamine. In these reactions, the carboxylic function of the amino acid acts as a Bronsted acid, rendering the proline a bifunctional catalyst. [Pg.9]

The direct activation and transformation of a C-H bond adjacent to a carbonyl group into a C-Het bond can take place via a variety of mechanisms, depending on the organocatalyst applied. When secondary amines are used as the catalyst, the first step is the formation of an enamine intermediate, as presented in the mechanism as outlined in Scheme 2.25. The enamine is formed by reaction of the carbonyl compound with the amine, leading to an iminium intermediate, which is then converted to the enamine intermediate by cleavage of the C-H bond. This enamine has a nucleophilic carbon atom which reacts with the electrophilic heteroatom, leading to formation of the new C-Het bond. The optically active product and the chiral amine are released after hydrolysis. [Pg.57]

A limitation of MacMillan s approach towards iminium-activated Diels-Alder reactions has been the use of a-substituted a,/ -unsaturated aldehydes as dieno-philes. Recently, Ishihara and Nakano [31] succeeded in partially overcoming this problem by identifying a novel primary amine organocatalyst for this type of... [Pg.99]

Referring to a mechanistic classification of organocatalysts (Seayad and List 2005), currently the two most prominent classes are Brpnsted acid catalysts and Lewis base catalysts. Within the latter class chiral secondary amines (enamine, iminium, dienamine activation for a short review please refer to List 2006) play an important role and can be considered as—by now—already widely extended mimetics of type I aldolases, whereas acylation catalysts, for example, refer to hydrolases or peptidases (Spivey and McDaid 2007). Thiamine-dependent enzymes, a versatile class of C-C bond forming and destructing biocatalysts (Pohl et al. 2002) with their common catalytically active coenzyme thiamine (vitamin Bi), are understood to be the biomimetic roots ofcar-bene catalysis, a further class of nucleophilic, Lewis base catalysis with increasing importance in the last 5 years. [Pg.184]


See other pages where Organocatalysts amines is mentioned: [Pg.233]    [Pg.265]    [Pg.361]    [Pg.6]    [Pg.142]    [Pg.148]    [Pg.176]    [Pg.186]    [Pg.256]    [Pg.296]    [Pg.321]    [Pg.11]    [Pg.176]    [Pg.16]    [Pg.110]    [Pg.181]    [Pg.200]    [Pg.245]    [Pg.270]    [Pg.273]    [Pg.6]    [Pg.60]    [Pg.234]    [Pg.290]    [Pg.324]    [Pg.403]    [Pg.56]    [Pg.208]    [Pg.282]   


SEARCH



Asymmetric organocatalysts amines

Binaphthyl-derived Cyclic Amines and Their Salts as Asymmetric Organocatalysts

Organocatalysts amine-sulfonamide

Organocatalysts bifunctional amine-thiourea organocatalyst

© 2024 chempedia.info