Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic molecules states

Figure Bl.1.3. State energy diagram for a typical organic molecule. Solid arrows show radiative transitions A absorption, F fluorescence, P phosphorescence. Dotted arrows non-radiative transitions. Figure Bl.1.3. State energy diagram for a typical organic molecule. Solid arrows show radiative transitions A absorption, F fluorescence, P phosphorescence. Dotted arrows non-radiative transitions.
Typical singlet lifetimes are measured in nanoseconds while triplet lifetimes of organic molecules in rigid solutions are usually measured in milliseconds or even seconds. In liquid media where drfifiision is rapid the triplet states are usually quenched, often by tire nearly iibiqitoiis molecular oxygen. Because of that, phosphorescence is seldom observed in liquid solutions. In the spectroscopy of molecules the tenn fluorescence is now usually used to refer to emission from an excited singlet state and phosphorescence to emission from a triplet state, regardless of the actual lifetimes. [Pg.1143]

Ireland J F and Wyatt PAH 1976 Acid-base properties of electronically excited states of organic molecules Adi/. Rhys. Org. Chem. 12 131-221... [Pg.2969]

To use direct dynamics for the study of non-adiabatic systems it is necessary to be able to efficiently and accurately calculate electronic wave functions for excited states. In recent years, density functional theory (DFT) has been gaining ground over traditional Hartree-Fock based SCF calculations for the treatment of the ground state of large molecules. Recent advances mean that so-called time-dependent DFT methods are now also being applied to excited states. Even so, at present, the best general methods for the treatment of the photochemistry of polyatomic organic molecules are MCSCF methods, of which the CASSCF method is particularly powerful. [Pg.299]

M. Klessinger and J, Michl, Excited states and photochemistry of organic molecules, VCH New York, 1994. [Pg.319]

Pairwise hydrophobic interactions can be used to alter the reactivity of organic molecules in water. For instance, the rate of hydrolysis reactions may be influenced significantly by the presence of hydrophobic cosolutes. The effect on reactivity has been analysed by comparirg the interactions between initial state and cosolute with those between transition state and cosolute. ... [Pg.167]

Ah initio programs attempt to compute the lowest-energy state of a specified multiplicity. Thus, calculations for different spin states will give the lowest-energy state and a few of the excited states. This is most often done to determine singlet-triplet gaps in organic molecules. [Pg.216]

M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules VCH, New York (1995). [Pg.221]

Organic molecules are generally composed of covalent bonded atoms with several well-defined hybridization states tending to have well-understood preferred geometries. This makes them an ideal case for molecular mechanics parameterization. Likewise, organic molecules are the ideal case for semiempirical parameterization. [Pg.283]

Ah initio methods are applicable to the widest variety of property calculations. Many typical organic molecules can now be modeled with ah initio methods, such as Flartree-Fock, density functional theory, and Moller Plesset perturbation theory. Organic molecule calculations are made easier by the fact that most organic molecules have singlet spin ground states. Organics are the systems for which sophisticated properties, such as NMR chemical shifts and nonlinear optical properties, can be calculated most accurately. [Pg.284]

The HyperChem program from Hypercube Inc. and UniChem from Oxford Molecular can be used as graphic interfaces to Q-Chem. At the time we conducted our tests, it was not yet available on all the platforms listed as being supported. The current version is well designed for ground- and excited-state calculations on small or large organic molecules. [Pg.340]

Quantum mechanics calculations use either of two forms of the wave function Restricted Hartree-Fock (RHF) or Unrestricted Hartree-Fock (UHF). Use the RHF wave function for singlet electronic states, such as the ground states of stable organic molecules. [Pg.37]

Previous expositions of photochemical laws have distinguished ptominentiy between states of singlet and triplet multiplicity (1). This distinction continues to be important with respect to photophysics of smaH organic molecules, but among inorganic and organometaHic compounds, states of other multiplicities, eg, doublet and quartet states (23), play an important role. Spin conservation characterizes electronic molecular excitations and localized... [Pg.388]

Most of the free-radical mechanisms discussed thus far have involved some combination of homolytic bond dissociation, atom abstraction, and addition steps. In this section, we will discuss reactions that include discrete electron-transfer steps. Addition to or removal of one electron fi om a diamagnetic organic molecule generates a radical. Organic reactions that involve electron-transfer steps are often mediated by transition-metal ions. Many transition-metal ions have two or more relatively stable oxidation states differing by one electron. Transition-metal ions therefore firequently participate in electron-transfer processes. [Pg.724]

Coagulation involves the addition of chemicals to alter the physical state of dissolved and suspended solids. This facilitates their removal by sedimentation and filtration. The most common primary coagulants are alum ferric sulfate and ferric chloride. Additional chemicals that may be added to enhance coagulation include activate silica, a complex silicate made from sodium silicate, and charged organic molecules called polyelectrolytes, which include large-molecular-weight polyacrylamides, dimethyl-diallylammonium chloride, polyamines, and starch. [Pg.248]

For ground state molecular systems for which the semi-empirical method is well-parametrized and well-calibrated. In general, semi-empirical methods have been developed to focus on simple organic molecules. [Pg.111]


See other pages where Organic molecules states is mentioned: [Pg.1554]    [Pg.1591]    [Pg.1986]    [Pg.178]    [Pg.45]    [Pg.254]    [Pg.493]    [Pg.35]    [Pg.38]    [Pg.522]    [Pg.559]    [Pg.645]    [Pg.45]    [Pg.162]    [Pg.370]    [Pg.167]    [Pg.168]    [Pg.418]    [Pg.40]    [Pg.127]    [Pg.397]    [Pg.102]    [Pg.25]    [Pg.227]    [Pg.743]    [Pg.752]    [Pg.104]    [Pg.522]    [Pg.559]    [Pg.118]    [Pg.190]    [Pg.209]    [Pg.323]   
See also in sourсe #XX -- [ Pg.47 , Pg.48 , Pg.49 , Pg.50 , Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 ]




SEARCH



Electronically excited states of organic molecules, acid-base properties

Molecules organization

Molecules organized state

Molecules organized state

Triplet state organic molecules

© 2024 chempedia.info