Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic molecules solubility

Solvent extraction. In this method, organic molecules, soluble metals, and other materials are extracted from aqueous and nonaqueous streams with the help of other organic solvents. Although it is a very well-established technique, pollutants are seldom treated using this technique. Only a very few organic pollutants like CFG and phenols are removed by this technique. This is a method in which one can preconcentrate the pollutant and recover it. [Pg.67]

A FIGURE 24.2 Organic molecules soluble in polar solvetils. [Pg.1007]

Substances are generally soluble in like solvents. Organic molecules in molecular solvents such as CCI4, C2H5OH, ether, propanone. Inorganic salts are often soluble in water and less soluble in organic solvents. [Pg.366]

Commercial compounds are oil-soluble organic molecules containing chlorine, sulfur or phosphorus atoms (Figure 9.12). [Pg.363]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

Iron(III) chloride forms numerous addition compounds, especially with organic molecules which contain donor atoms, for example ethers, alcohols, aldehydes, ketones and amines. Anhydrous iron(III) chloride is soluble in, for example, ether, and can be extracted into this solvent from water the extraction is more effective in presence of chloride ion. Of other iron(III) halides, iron(III) bromide and iron(III) iodide decompose rather readily into the +2 halide and halogen. [Pg.394]

Klopman G, S Wang and D M Balthasar 1992. Estimation of Aqueous Solubility of Organic Molecule by the Group Contribution Approach. Application to the Study of Biodegradation. Journal c Chemical Information and Computer Science 32 474-482. [Pg.739]

The Hildebrand Solubility Parameter. This parameter, 4 can be estimated (10) based on data for a set of additive constants, E, for the more common groups ia organic molecules to account for the observed magnitude of the solubiHty parameter d = EE/V where Erepresents molar volume. SolubiHty parameters can be used to classify plasticizers of a given family ia terms of their compatibihty with PVC, but they are of limited use for comparing plasticizers of differeat families, eg, phthalates with adipates. [Pg.124]

The physical characteristics of /i /f-amyl alcohol diverge from the standard trends for the other alcohols it has a lower boiling point, higher melting point, higher vapor pressure, and low surface tension. Most notably, organic molecules are highly soluble in /i /f-amyl alcohol. [Pg.372]

When a metal ion is chelated by a ligand such as citric acid, it is no longer free to undergo many of its chemical reactions. A metal ion that is normally colored may, in the presence of citrate, have Httie or no color. Under pH conditions that may precipitate a metal hydroxide, the citrate complex may be soluble. Organic molecules that are catalyticaHy decomposed in the presence of metal ions can be made stable by chelating the metal ions with citric acid. [Pg.181]

Lipids are naturally occurring organic molecules that have limited solubility in water and can be isolated from organisms by extraction with nonpolar organic solvents. Fats, oils, waxes, many vitamins and hormones, and most nonprotein cell-meznbrane components are examples. Note that this definition differs from the sort used for carbohydrates and proteins in that lipids are defined by a physical property (solubility) rather than by structure. Of the many kinds of lipids, we ll be concerned in this chapter only with a few triacvlglycerols, eicosanoids, terpenoids, and steroids. [Pg.1060]

PEG polymers are widely used as water soluble supports [99]. Although these polymers suffer from easy loss of PEG oligomers, they are frequently used for the preparation of small organic molecules [100-105] and biopolymers [106,107]. The main benefit of PEG supports is their solubility in water as well as most organic solvents. Also, as opposed to most solid-phase techniques, PEG polymers allow for easy on-bead NMR monitoring. Soluble PEG supports have been used frequently in synthetic microwave chemistry protocols [108-122]. [Pg.87]

Most small organic molecules are soluble in mixed organic-aqueous solvents and can be easily analyzed using RPLC. However, there are some polar compounds which are not soluble in typical RPLC solvent systems or are unstable in an aqueous mobile phase system. These compounds can be analyzed on an RPLC column with a nonaqueous solvent system. This technique is called "nonaqueous reversed phase chromatography" (NARP).20-21 The NARP technique is primarily used for the separation of lipophilic compounds having low to medium polarity and a molecular weight larger than... [Pg.148]

The spectra we have so far discussed were recorded using CDC13> the best allround solvent for organic molecules. However, many molecules, especially biomolecules, are only soluble in water biological systems often remain stable only in aqueous solution. Thus NMR measurements in water are extremely important our model compound is also water-soluble, so that we can use it to demonstrate some important experiments. [Pg.10]


See other pages where Organic molecules solubility is mentioned: [Pg.25]    [Pg.25]    [Pg.165]    [Pg.327]    [Pg.75]    [Pg.283]    [Pg.286]    [Pg.14]    [Pg.562]    [Pg.411]    [Pg.586]    [Pg.1246]    [Pg.29]    [Pg.76]    [Pg.323]    [Pg.809]    [Pg.300]    [Pg.63]    [Pg.29]    [Pg.325]    [Pg.21]    [Pg.838]    [Pg.143]    [Pg.23]    [Pg.361]    [Pg.117]    [Pg.310]    [Pg.145]    [Pg.54]    [Pg.385]    [Pg.196]    [Pg.28]    [Pg.116]    [Pg.15]    [Pg.73]    [Pg.39]   
See also in sourсe #XX -- [ Pg.96 , Pg.97 , Pg.97 ]

See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Molecules organization

Organic soluble

Solubility organic

© 2024 chempedia.info